A Predictor-Corrector Compact Difference Scheme for a Nonlinear Fractional Differential Equation

被引:39
|
作者
Jiang, Xiaoxuan [1 ]
Wang, Jiawei [1 ]
Wang, Wan [1 ]
Zhang, Haixiang [1 ]
机构
[1] Hunan Univ Technol, Coll Sci, Zhuzhou 412008, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear fractional differential equation; compact difference; predictor-corrector method; existence and uniqueness; TIME 2-GRID ALGORITHM; BURGERS-EQUATION;
D O I
10.3390/fractalfract7070521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, a predictor-corrector compact difference scheme for a nonlinear fractional differential equation is presented. The MacCormack method is provided to deal with nonlinear terms, the Riemann-Liouville (R-L) fractional integral term is treated by means of the second-order convolution quadrature formula, and the Caputo derivative term is discretized by the L1 discrete formula. Through the first and second derivatives of the matrix under the compact difference, we improve the precision of this scheme. Then, the existence and uniqueness are proved, and the numerical experiments are presented.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Dynamics of generalized Caputo type delay fractional differential equations using a modified Predictor-Corrector scheme
    Odibat, Zaid
    Erturk, Vedat Suat
    Kumar, Pushpendra
    Govindaraj, V
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [32] A PREDICTOR-CORRECTOR SCHEME FOR THE NONLINEAR CHAOTIC VARIABLE-ORDER FRACTIONAL THREE-DIMENSIONAL SYSTEM
    Shabani, A.
    Sheikhani, A. H. Refahi
    Aminikhah, H.
    Gholamin, P.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (02): : 187 - 202
  • [33] A predictor-corrector scheme for the nonlinear chaotic variable-order fractional three-dimensional system
    Shabani, A.
    Refahi Sheikhani, A.H.
    Aminikhah, H.
    Gholamin, P.
    Refahi Sheikhani, A.H. (ah-refahi@yahoo.com), 1600, Politechnica University of Bucharest (83): : 187 - 202
  • [34] Higher-order predictor-corrector methods with an enhanced predictor for fractional differential equations
    Bu, Sunyoung
    Jeon, Yonghyeon
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2025,
  • [35] Implicit predictor-corrector central finite difference scheme for the equations of magnetohydrodynamic simulations
    Tsai, T. C.
    Yu, H. -S.
    Hsieh, M. -S.
    Lai, S. H.
    Yang, Y. -H.
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 196 : 1 - 12
  • [36] Predictor-Corrector Difference Scheme for Numerical Solution of the Euler and Navier–Stokes Equations
    Kovenya V.M.
    Eremin A.A.
    Journal of Mathematical Sciences, 2016, 215 (4) : 484 - 498
  • [37] A PREDICTOR-CORRECTOR METHOD FOR FRACTIONAL EVOLUTION EQUATIONS
    Choi, Hong Won
    Choi, Young Ju
    Chung, Sang Kwon
    Bulletin of the Korean Mathematical Society, 2016, 53 (06) : 1725 - 1739
  • [38] A modified predictor-corrector scheme with graded mesh for numerical solutions of nonlinear Ψ-caputo fractional-order systems
    Songsanga, Danuruj
    Ngiamsunthorn, Parinya Sa
    OPEN MATHEMATICS, 2025, 23 (01):
  • [39] A predictor-corrector scheme for open boundary problems
    Aiello, G
    Alfonzetti, S
    Borzi, G
    Salerno, N
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2573 - 2576
  • [40] Error analysis of the universal predictor-corrector algorithm for generalized fractional differential equations
    Odibat, Zaid
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,