A Multiview Text Imagination Network Based on Latent Alignment for Image-Text Matching

被引:2
|
作者
Shang, Heng [1 ]
Zhao, Guoshuai [1 ]
Shi, Jing [1 ]
Qian, Xueming [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Software Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, SMILES Lab, Xian 710049, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Feature extraction; Semantics; Text mining; Intelligent systems; Image representation; Task analysis; Image edge detection;
D O I
10.1109/MIS.2023.3265176
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In image-text matching fields, one of the keys to improving performance is to extract features with more semantic information. Existing works demonstrate that semantic enrichment through knowledge expansion can improve performance. Most of them expand image features, however, the shortage of semantic information in text modality and the unilateral character of the view are often bottlenecks that limit the performance of image-text matching models. To solve the two problems, we aggregate knowledge from multiple views and propose a word imagination graph (WIG). A WIG can be used to expand textual semantic information by imagination based on input images. Then, utilizing WIG, we construct a novel multiview text imagination network (MTIN). A MTIN enables latent alignment of images and texts on tags, which can assist matching on a semantic level. Results from the Flickr30K and MS-COCO datasets demonstrate the effectiveness of our method. The source code has been released on GitHub https://github.com/smileslabsh/Multiview-Text-Imagination-Network.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 50 条
  • [31] Hierarchical Feature Aggregation Based on Transformer for Image-Text Matching
    Dong, Xinfeng
    Zhang, Huaxiang
    Zhu, Lei
    Nie, Liqiang
    Liu, Li
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (09) : 6437 - 6447
  • [32] Asymmetric Polysemous Reasoning for Image-Text Matching
    Zhang, Hongping
    Yang, Ming
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1013 - 1022
  • [33] Cross-modal Semantically Augmented Network for Image-text Matching
    Yao, Tao
    Li, Yiru
    Li, Ying
    Zhu, Yingying
    Wang, Gang
    Yue, Jun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (04)
  • [34] Global-Guided Asymmetric Attention Network for Image-Text Matching
    Wu, Dongqing
    Li, Huihui
    Tang, Yinge
    Guo, Lei
    Liu, Hang
    NEUROCOMPUTING, 2022, 481 : 77 - 90
  • [35] Multi-scale motivated neural network for image-text matching
    Xueyang Qin
    Lishuang Li
    Guangyao Pang
    Multimedia Tools and Applications, 2024, 83 : 4383 - 4407
  • [36] Fusion layer attention for image-text matching
    Wang, Depeng
    Wang, Liejun
    Song, Shiji
    Huang, Gao
    Guo, Yuchen
    Cheng, Shuli
    Ao, Naixiang
    Du, Anyu
    NEUROCOMPUTING, 2021, 442 : 249 - 259
  • [37] Cross-modal Graph Matching Network for Image-text Retrieval
    Cheng, Yuhao
    Zhu, Xiaoguang
    Qian, Jiuchao
    Wen, Fei
    Liu, Peilin
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [38] Visual Semantic Reasoning for Image-Text Matching
    Li, Kunpeng
    Zhang, Yulun
    Li, Kai
    Li, Yuanyuan
    Fu, Yun
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 4653 - 4661
  • [39] Global-Guided Asymmetric Attention Network for Image-Text Matching
    Wu, Dongqing
    Li, Huihui
    Tang, Yinge
    Guo, Lei
    Liu, Hang
    Neurocomputing, 2022, 481 : 77 - 90
  • [40] CycleMatch: A cycle-consistent embedding network for image-text matching
    Liu, Yu
    Guo, Yanming
    Liu, Li
    Bakker, Erwin M.
    Lew, Michael S.
    PATTERN RECOGNITION, 2019, 93 : 365 - 379