RIG-I recognizes metabolite-capped RNAs as signaling ligands

被引:16
|
作者
Schweibenz, Brandon D. [1 ,2 ]
Solotchi, Mihai [1 ,2 ]
Hanpude, Pranita [1 ]
Devarkar, Swapnil C. [1 ,2 ]
Patel, Smita S. [1 ]
机构
[1] Rutgers State Univ, Robert Wood Johnson Med Sch, Dept Biochem & Mol Biol, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Grad Sch Biomed Sci, Robert Wood Johnson Med Sch, Piscataway, NJ 08854 USA
基金
美国国家卫生研究院;
关键词
STRUCTURAL BASIS; CELLULAR RNA; MECHANISM; HELICASE; MDA5;
D O I
10.1093/nar/gkad518
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The innate immune receptor RIG-I recognizes 5 '-triphosphate double-stranded RNAs (5 ' PPP dsRNA) as pathogenic RNAs. Such RNA-ends are present in viral genomes and replication intermediates, and they activate the RIG-I signaling pathway to produce a potent interferon response essential for viral clearance. Endogenous mRNAs cap the 5 ' PPP-end with m(7)G and methylate the 2 '-O-ribose to evade RIG-I, preventing aberrant immune responses deleterious to the cell. Recent studies have identified RNAs in cells capped with metabolites such as NAD(+), FAD and dephosphoCoA. Whether RIG-I recognizes these metabolite-capped RNAs has not been investigated. Here, we describe a strategy to make metabolite-capped RNAs free from 5 ' PPP dsRNA contamination, using in vitro transcription initiated with metabolites. Mechanistic studies show that metabolite-capped RNAs have a high affinity for RIG-I, stimulating the ATPase activity at comparable levels to 5 ' PPP dsRNA. Cellular signaling assays show that the metabolite-capped RNAs potently stimulate the innate antiviral immune response. This demonstrates that RIG-I can tolerate diphosphate-linked, capped RNAs with bulky groups at the 5 ' RNA end. This novel class of RNAs that stimulate RIG-I signaling may have cellular roles in activating the interferon response and may be exploited with proper functionalities for RIG-I-related RNA therapeutics.
引用
收藏
页码:8102 / 8114
页数:13
相关论文
共 50 条
  • [11] RIG-I signaling in RNA virus infection and immunity
    Horner, S. M.
    CYTOKINE, 2012, 59 (03) : 493 - 493
  • [12] Structural and biochemical studies of RIG-I antiviral signaling
    Feng, Miao
    Ding, Zhanyu
    Xu, Liang
    Kong, Liangliang
    Wang, Wenjia
    Jiao, Shi
    Shi, Zhubing
    Greene, Mark I.
    Cong, Yao
    Zhou, Zhaocai
    PROTEIN & CELL, 2013, 4 (02) : 142 - 154
  • [13] RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling
    Durbin, Ann Fiegen
    Wang, Chen
    Marcotrigiano, Joseph
    Gehrke, Lee
    MBIO, 2016, 7 (05):
  • [14] The lncRNAs involved in regulating the RIG-I signaling pathway
    Liu, Jing
    Ji, Qinglu
    Cheng, Feng
    Chen, Dengwang
    Geng, Tingting
    Huang, Yueyue
    Zhang, Jidong
    He, Yuqi
    Song, Tao
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2022, 12
  • [15] Antiviral Signaling Mediated By RIG-I Translocation Activity
    Myong, Sua
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 591A - 591A
  • [16] Emerging Role of Ubiquitination in Antiviral RIG-I Signaling
    Maelfait, Jonathan
    Beyaert, Rudi
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2012, 76 (01) : 33 - 45
  • [17] EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type IIFN
    Samanta, Mrinal
    Iwakiri, Dai
    Kanda, Teru
    Imaizumi, Tadaatsu
    Takada, Kenzo
    EMBO JOURNAL, 2006, 25 (18): : 4207 - 4214
  • [18] RNF135 is a positive regulator of IFN expression and involved in RIG-I signaling pathway by targeting RIG-I
    Lai, Yuxiong
    Liang, Min
    Hu, La
    Zeng, Zicheng
    Lin, Hai
    Yi, Gao
    Li, Ming
    Liu, Zhaoyu
    FISH & SHELLFISH IMMUNOLOGY, 2019, 86 : 474 - 479
  • [19] Structural and biochemical studies of RIG-I antiviral signaling
    Miao Feng
    Zhanyu Ding
    Liang Xu
    Liangliang Kong
    Wenjia Wang
    Shi Jiao
    Zhubing Shi
    Mark IGreene
    Yao Cong
    Zhaocai Zhou
    Protein & Cell, 2013, 4 (02) : 142 - 159
  • [20] RNAs are conserved endogenous RIG-I ligands across RNA virus infection and are targeted by HIV-1
    Vabret, Nicolas
    Najburg, Valerie
    Solovyov, Alexander
    Gopal, Ramya
    McClain, Christopher
    Sulc, Petr
    Balan, Sreekumar
    Rahou, Yannis
    Beauclair, Guillaume
    Chazal, Maxime
    Varet, Hugo
    Legendre, Rachel
    Sismeiro, Odile
    David, Raul Y. Sanchez
    Chauveau, Lise
    Jouvenet, Nolwenn
    Markowitz, Martin
    van der Werf, Sylvie
    Schwartz, Olivier
    Tangy, Frederic
    Bhardwaj, Nina
    Greenbaum, Benjamin D.
    Komarova, Anastassia V.
    ISCIENCE, 2022, 25 (07)