Alternating direction implicit method for singularly perturbed 2D parabolic convection-diffusion-reaction problem with two small parameters

被引:6
|
作者
Mrityunjoy, B. [1 ]
Natesan, S. [1 ]
Sendur, A. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Gauhati 781039, India
[2] Alanya Alaaddin Keykubat Univ, Dept Math Educ, Antalya, Turkey
关键词
Singularly perturbed 2D parabolic convection-reaction-diffusion problem; alternating direction implicit scheme; finite difference scheme; Shishkin meshes; stability; uniform error estimate; FINITE-DIFFERENCE SCHEME; MESH;
D O I
10.1080/00207160.2022.2114077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we construct and analyse an Alternating Direction Implicit (ADI) scheme for singularly perturbed 2D parabolic convection-diffusion-reaction problems with two small parameters. We consider the operator-splitting ADI finite difference scheme for time stepping on a uniform mesh and a simple upwind-difference scheme for spatial discretization on a specially designed piecewise-uniform Shishkin mesh. The resulting scheme is proved to be uniformly convergent of order O(N-1 In N + M-1), where N, M are the spatial and temporal parameters respectively. Numerical experiments confirm the theoretical results and the effectiveness of the proposed method.
引用
收藏
页码:253 / 282
页数:30
相关论文
共 50 条
  • [21] Efficient finite element method for 2D singularly perturbed parabolic convection diffusion problems with discontinuous source term
    Soundararajan, R.
    Subburayan, V.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06):
  • [22] A multi-splitting method to solve 2D parabolic reaction-diffusion singularly perturbed systems
    Clavero, C.
    Jorge, J. C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 417
  • [23] A parameter uniform higher order scheme for 2D singularly perturbed parabolic convection-diffusion problem with turning point
    Yadav, Swati
    Rai, Pratima
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 205 : 507 - 531
  • [24] Pointwise error estimate of the LDG method for 2D singularly perturbed reaction-diffusion problem
    Wang, Xuesong
    Jiang, Shan
    Cheng, Yao
    NUMERICAL ALGORITHMS, 2024,
  • [25] Nonpolynomial Spline Method for Singularly Perturbed Time-Dependent Parabolic Problem with Two Small Parameters
    Mekonnen, Tariku Birabasa
    Duressa, Gemechis File
    Mathematical Problems in Engineering, 2023, 2023
  • [26] Uniformly Convergent Numerical Method for Singularly Perturbed Time Delay Parabolic Problem with Two Small Parameters
    L. Govindarao
    Subal Ranjan Sahu
    Jugal Mohapatra
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 2373 - 2383
  • [27] Numerical Analysis of a 2d Singularly Perturbed Semilinear Reaction-Diffusion Problem
    Kopteva, Natalia
    NUMERICAL ANALYSIS AND ITS APPLICATIONS: 4TH INTERNATIONAL CONFERENCE, NAA 2008, 2009, 5434 : 80 - 91
  • [28] A weak Galerkin finite-element method for singularly perturbed convection-diffusion-reaction problems with interface
    Ahmed, Tazuddin
    Baruah, Rashmita
    Kumar, Raman
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (07):
  • [29] Uniformly Convergent Numerical Method for Singularly Perturbed Time Delay Parabolic Problem with Two Small Parameters
    Govindarao, L.
    Sahu, Subal Ranjan
    Mohapatra, Jugal
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A5): : 2373 - 2383
  • [30] Parameter-uniform finite difference method for singularly perturbed parabolic problem with two small parameters
    Bullo, Tesfaye Aga
    Degla, Guy Aymard
    Duressa, Gemechis File
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2022, 23 (03): : 210 - 218