Slow-Varying Dynamics-Assisted Temporal Capsule Network for Machinery Remaining Useful Life Estimation

被引:0
|
作者
Qin, Yan [1 ]
Yuen, Chau [1 ]
Shao, Yimin [2 ]
Qin, Bo [3 ]
Li, Xiaoli [4 ]
机构
[1] Singapore Univ Technol & Design, Engn Prod Dev Pillar, Singapore 487372, Singapore
[2] Chongqing Univ, Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[3] Inner Mongolia Univ Sci & Technol, Sch Mech Engn, Baotou 014010, Peoples R China
[4] ASTAR, Inst Infocomm Res, Singapore 138632, Singapore
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Estimation; Degradation; Time series analysis; Machinery; Tuning; Correlation; Indexes; Capsule network (CapsNet); deep dynamics analysis; intelligent manufacturing; remaining useful life (RUL) estimation; SYSTEMS;
D O I
10.1109/TCYB.2022.3164683
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Capsule network (CapsNet) acts as a promising alternative to the typical convolutional neural network, which is the dominant network to develop the remaining useful life (RUL) estimation models for mechanical equipment. Although CapsNet comes with an impressive ability to represent entities' hierarchical relationships through a high-dimensional vector embedding, it fails to capture the long-term temporal correlation of run-to-failure time series measured from degraded mechanical equipment. On the other hand, the slow-varying dynamics, which reveals the low-frequency information hidden in mechanical dynamical behavior, is overlooked in the existing RUL estimation models (including CapsNet), limiting the utmost ability of advanced networks. To address the aforementioned concerns, we propose a slow-varying dynamics-assisted temporal CapsNet (SD-TemCapsNet) to simultaneously learn the slow-varying dynamics and temporal dynamics from measurements for accurate RUL estimation. First, in light of the sensitivity of fault evolution, slow-varying features are decomposed from normal raw data to convey the low-frequency components corresponding to the system dynamics. Next, the long short-term memory (LSTM) mechanism is introduced into CapsNet to capture the temporal correlation of time series. To this end, experiments conducted on an aircraft engine and a milling machine verify that the proposed SD-TemCapsNet outperforms the mainstream methods. In comparison with CapsNet, the estimation accuracy of the aircraft engine with four different scenarios has been improved by 10.17%, 24.97%, 3.25%, and 13.03% about the index root mean squared error, respectively. Similarly, the estimation accuracy of the milling machine has been improved by 23.57% compared to LSTM and 19.54% compared to CapsNet.
引用
收藏
页码:592 / 606
页数:15
相关论文
共 50 条
  • [21] Koopman-Informed Neural Network for Machinery's Nonlinear Dynamics Learning and Remaining Useful Life Prediction
    Wang, Enxiu
    Zhou, Haoxuan
    Wen, Guangrui
    Liu, Zimin
    Chen, Xuefeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [22] Graph Structure and Temporal Data Driven Remaining Useful Life Prediction Method for Machinery
    Shen T.
    Ding K.
    Li J.
    Huang R.
    Li W.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 183 - 194
  • [23] Spatio-temporal graph convolutional neural network for remaining useful life estimation of aircraft engines
    Wang M.
    Li Y.
    Zhang Y.
    Jia L.
    Aerospace Systems, 2021, 4 (1) : 29 - 36
  • [24] Temporal Knowledge Graph Informer Network for Remaining Useful Life Prediction
    Zhang, Yuanming
    Zhou, Weiyue
    Huang, Jiacheng
    Jin, Xiaohang
    Xiao, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [25] Remaining useful life prediction of machinery based on improved Sample Convolution and Interaction Network
    Cen, Zilang
    Hu, Shaolin
    Hou, Yandong
    Chen, Zhengquan
    Ke, Ye
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [26] Remaining Useful Life Prediction of Rotating Machinery using Hierarchical Deep Neural Network
    Xia, Min
    Li, Teng
    Liu, Lizhi
    Xu, Lin
    Gao, Shujun
    de Silva, Clarence W.
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 2778 - 2783
  • [27] Sparse graph structure fusion convolutional network for machinery remaining useful life prediction
    Cui, Lingli
    Shen, Qiang
    Xiao, Yongchang
    Liu, Dongdong
    Wang, Huaqing
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 254
  • [28] Recurrent convolutional neural network: A new framework for remaining useful life prediction of machinery
    Wang, Biao
    Lei, Yaguo
    Yan, Tao
    Li, Naipeng
    Guo, Liang
    NEUROCOMPUTING, 2020, 379 : 117 - 129
  • [29] HYBRID DEEP NEURAL NETWORK MODEL FOR REMAINING USEFUL LIFE ESTIMATION
    Al-Dulaimi, Ali
    Zabihi, Soheil
    Asif, Amir
    Mohammadi, Arash
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3872 - 3876
  • [30] Trend attention fully convolutional network for remaining useful life estimation
    Fan, Linchuan
    Chai, Yi
    Chen, Xiaolong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 225