Characterization, biological, and antimicrobial properties of nanocellulose isolated from peanut shells (Arachis hypogaea L.)

被引:1
|
作者
Terea, Hafidha [1 ]
Selloum, Djamel [2 ,3 ]
Rebiai, Abdelkrim [4 ,5 ]
Atia, Djamal [2 ]
Kouadri, Imane [6 ]
Seghir, Bachir Ben [4 ,7 ]
Messaoudi, Mohammed [4 ,8 ]
机构
[1] Univ Ouargla, Lab Valorizat & Promot Saharan Resources VTRS, Ouargla 30000, Algeria
[2] Univ Ouargla, Lab Dynam Interact & React Syst, Ouargla 30000, Algeria
[3] Univ Ferhat Abbas, Lab Croissance & Caracterisat Nouveaux Semicond, Setif 19000, Algeria
[4] Univ El Oued, Fac Exact Sci, Dept Chem, Lab Appl Chem & Environm LCAE, El Oued 39000, Algeria
[5] Univ El Oued, Renewable Energy Dev Unit Arid Zones UDERZA, El Oued 39000, Algeria
[6] Univ May 8 1945 Guelma, Dept Mat Sci, Lab Appl Chem LCA, BP 401, Guelma 24000, Algeria
[7] Univ 8 May 1945, Lab Ind Anal & Mat Engn LAGIM, POB 401, Guelma 24000, Algeria
[8] Nucl Res Ctr Birine, Ain Oussera 17200, Djelfa, Algeria
关键词
Cellulose; Nanocrystalline; Peanut shell; Arachis hypogaea L; Characterized; Antibacterial activity; CELLULOSE NANOCRYSTALS; EXTRACTION; NANOFIBERS; ACETATE; OPTIMIZATION; COMPOSITE; RESIDUES; BIOMASS; FIBER;
D O I
10.1007/s13399-023-04792-8
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Due to its promising features, cellulose, the most plentiful renewable material in nature, is used in a variety of industrial processes. In this work, we used peanut shells (Arachis hypogaea L.) for the purpose of producing microcrystalline cellulose (MCCs) and nanocrystalline cellulose (CNCs), respectively. The following process was used to separate cellulose from peanut shells: dewaxing, delignification/bleaching, and acid hydrolysis. The structural features of the isolated microcrystalline cellulose (MCCs) and cellulose nanocrystalline (CNCs) samples were tested by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) was used to morphologically analyze of the samples (peanut shells, microcrystalline cellulose, and nanocrystalline cellulose). The prepared CNCs' elemental composition was revealed by energy dispersive X-rays (EDX), and their crystallinity was shown by X-ray diffraction (XRD). The yield of peanut shells cellulose was (31.81%). FTIR analysis for the bleached peanut shells cellulose revealed the efficacious removal of the non-cellulosic materials and amorphous components from the polymer matrix. The obtained peanut shells' XRD results showed native cellulose's typical peaks (type I), along with a crystallinity index (CrI = 72.53%). Also, acid hydrolysis phase was used to adapt microcrystalline cellulose (MCCs) into cellulose nanocrystalline (CNCs) with higher crystallinity (CrI = 77.96%). According to each of these assays, the chemical treatment was successful in eliminating the non-cellulosic substances and obtaining a cellulose nanofiber.The antibacterial activity carried out against three bacterial strains (Staphylococcus aureus, Escherichia Coli, and Salmonella typhimurium) that cellulose nanofibers showed moderate antibacterial activity against a strain Staphylococcus aureus and Salmonella typhimurium.The current study demonstrates the viability of employing peanut shells as a cost-effective source for acquiring CNCs that are intended for use in the food and pharmaceutical industries.
引用
收藏
页码:30435 / 30445
页数:11
相关论文
共 50 条
  • [31] Uptake and timing of calcium in runner peanut (Arachis hypogaea L.)
    Yang, Rui
    Howe, Julie A.
    Harris, Glendon H.
    Balkcom, Kris B.
    FIELD CROPS RESEARCH, 2022, 277
  • [32] Transforming peanut (Arachis hypogaea L.) : a simple in planta method
    Wang, Chuan Tang
    Wang, Xiu Zhen
    Tang, Yue Yi
    Wu, Qi
    Li, Gui Jie
    Song, Guo Sheng
    Yu, Hong Tao
    Hui, Dong Qing
    Guo, Bao Tai
    RESEARCH ON CROPS, 2013, 14 (03) : 850 - 854
  • [33] Chemical composition of aboriginal peanut (Arachis hypogaea L.) seeds from Uruguay
    Grosso, Nelson R.
    Lucini, Enrique I.
    López, Abel G.
    Guzmán, Carlos A.
    Grasas y Aceites, 50 (03): : 203 - 207
  • [34] CHARACTERIZATION OF THIAMINE IN RAW PEANUT (ARACHIS-HYPOGAEA L)
    DOUGHERTY, RH
    COBB, WY
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1970, 18 (05) : 921 - +
  • [35] Molecular characterization and expression profiling of the phosphoenolpyruvate carboxylase genes in peanut (Arachis hypogaea L.)
    Pan, L.
    Zhang, J.
    Chen, N.
    Chen, M.
    Wang, M.
    Wang, T.
    Chi, X.
    Yuan, M.
    Wan, Y.
    Yu, S.
    Liu, F.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2017, 64 (04) : 576 - 587
  • [36] A recirculating hydroponic system for studying peanut (Arachis hypogaea L.)
    Mackowiak, CL
    Wheeler, RM
    Stutte, GW
    Yorio, NC
    Ruffe, LM
    HORTSCIENCE, 1998, 33 (04) : 650 - 651
  • [37] LEAD ACCUMULATION AND TOXICITY IN PEANUT (ARACHIS HYPOGAEA L.) SEEDLINGS
    Dogan, Muhittin
    Akgul, Hasan
    Tozlu, Ihatni
    FRESENIUS ENVIRONMENTAL BULLETIN, 2013, 22 (08): : 2350 - 2356
  • [38] Characterization and purification of anthocyanins from black peanut (Arachis hypogaea L.) skin by combined column chromatography
    Zhao, Zhenlei
    Wu, Min
    Zhan, Yali
    Zhan, Kanghua
    Chang, Xiulian
    Yang, Hongshun
    Li, Zhanming
    JOURNAL OF CHROMATOGRAPHY A, 2017, 1519 : 74 - 82
  • [39] Chemical composition of aboriginal peanut (Arachis hypogaea L.) seeds from Uruguay
    Grosso, NR
    Lucini, EI
    López, AG
    Guzmán, CA
    GRASAS Y ACEITES, 1999, 50 (03) : 203 - 207
  • [40] Characterization of Spanish peanut germplasm (Arachis hypogaea L.) for sugar profiling and oil quality
    Bishi, S. K.
    Kumar, Lokesh
    Dagla, M. C.
    Mahatma, M. K.
    Rathnakumar, A. L.
    Lalwani, H. B.
    Misra, J. B.
    INDUSTRIAL CROPS AND PRODUCTS, 2013, 51 : 46 - 50