Optimisation of FSP parameters in cast magnesium alloy using hybrid GRA methodology

被引:0
|
作者
Joshi, Sumit [1 ]
Singh, Ramesh Chandra [2 ]
Chaudhary, Rajiv [2 ]
机构
[1] Maharaja Agrasen Inst Technol, Dept Mech Engn, Rohini Sect 22, New Delhi 110086, India
[2] Delhi Technol Univ, Dept Mech Engn, Bawana Rd, New Delhi 110042, India
关键词
friction stir processing; FSP; magnesium; ANOVA; grey relational analysis; GRA; principal component analysis; PCA; optimisation; Taguchi; TOOL PIN PROFILE; MG-SI ALLOYS; MECHANICAL-PROPERTIES; MULTIOBJECTIVE OPTIMIZATION; MULTIRESPONSE OPTIMIZATION; FRICTION; COMPOSITE; MICROSTRUCTURE; BEHAVIOR; ZONE;
D O I
10.1504/IJMPT.2023.136518
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current investigation utilised the grey relational analysis (GRA)-Taguchi-principal component analysis (PCA) methodology to discover the optimal friction stir processing (FSP) parameters for the treatment of cast Mg-2%Al-1%Si alloy derived from AS series magnesium alloys. The input parameters of the rotation rate, traverse speed, and shoulder size were chosen based on the L9 Taguchi design, and the maximum tensile strength, Ductility or % extension, and microhardness were the multiple responses. By using an optimisation strategy, these responses were combined into a single response called grey relational grade (GRG). The optimised combination of process parameters was determined as 800 rpm rotation rate, 50 mm/min traverse speed and 20 mm shoulder size, which produced the largest GRG value. The ANOVA analysis revealed that the rotation rate parameter exerted a significant influence on the process. Furthermore, the predicted results were verified through a confirmation experiment and were found to be consistent with the experimental outcomes.
引用
收藏
页码:394 / 415
页数:23
相关论文
共 50 条
  • [31] Determination of the kinetic parameters in magnesium alloy using TEM and DSC techniques
    Barrena, M. I.
    Gomez de Salazar, J. M.
    Pascual, L.
    Soria, A.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2013, 113 (02) : 713 - 720
  • [32] Determination of the kinetic parameters in magnesium alloy using TEM and DSC techniques
    M. I. Barrena
    J. M. Gómez de Salazar
    L. Pascual
    A. Soria
    Journal of Thermal Analysis and Calorimetry, 2013, 113 : 713 - 720
  • [33] Optimisation of Process Parameters on Thin Shell Part Using Response Surface Methodology (RSM)
    Faiz, J. M.
    Shayfull, Z.
    Nasir, S. M.
    Fathullah, M.
    Rashidi, M. M.
    3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017), 2017, 1885
  • [34] Parametric study and optimisation of operating parameters of a centrifugal humidifier using response surface methodology
    Suranjan Salins, Sampath
    Kumar, Shiva
    Reddy, S. V. Kota
    COGENT ENGINEERING, 2024, 11 (01):
  • [35] OPTIMISATION OF THE OPERATIONAL PARAMETERS DURING A BIOLOGICAL NITRIFICATION PROCESS USING RESPONSE SURFACE METHODOLOGY
    Soltani, R. Darvishi Cheshmeh
    Rezaee, A.
    Khataee, A. R.
    Godini, H.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2014, 92 (01): : 13 - 22
  • [36] Optimisation of performance parameters for biodiesel production with slow pyrolysis using response surface methodology
    Mehta, Alpesh
    Mehta, Nirvesh
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2021, 42 (16) : 1823 - 1829
  • [37] Optimizing turning parameters in the machining of AM alloy using Taguchi methodology
    Dutta, Sunil
    Narala, Suresh Kumar Reddy
    MEASUREMENT, 2021, 169 (169)
  • [38] Using hybrid reinforcement methodology to enhance overall mechanical performance of pure magnesium
    Wong, WLE
    Gupta, M
    JOURNAL OF MATERIALS SCIENCE, 2005, 40 (11) : 2875 - 2882
  • [39] Using hybrid reinforcement methodology to enhance overall mechanical performance of pure magnesium
    W. L. E. Wong
    M. Gupta
    Journal of Materials Science, 2005, 40 : 2875 - 2882
  • [40] Modelling and optimisation of duplex turning of titanium alloy (grade 5) using Taguchi methodology-response surface methodology
    Kumar S.
    Yadav R.N.
    Kumar R.
    International Journal of Industrial and Systems Engineering, 2020, 35 (04) : 463 - 481