Advances in breast cancer risk modeling: integrating clinics, imaging, pathology and artificial intelligence for personalized risk assessment

被引:9
|
作者
Pesapane, Filippo [1 ]
Battaglia, Ottavia [2 ]
Pellegrino, Giuseppe [2 ]
Mangione, Elisa [3 ,4 ]
Petitto, Salvatore [5 ]
Del Fiol Manna, Eliza [6 ]
Cazzaniga, Laura [6 ,7 ]
Nicosia, Luca [1 ]
Lazzeroni, Matteo [6 ]
Corso, Giovanni [5 ,8 ,9 ]
Fusco, Nicola [3 ,8 ]
Cassano, Enrico [1 ]
机构
[1] IEO European Inst Oncol IRCCS, Breast Imaging Div, I-20141 Milan, Italy
[2] Univ Milan, Postgrad Sch Radiodiagnost, I-20141 Milan, Italy
[3] IEO European Inst Oncol IRCCS, Div Pathol, I-20141 Milan, Italy
[4] Univ Milan, Sch Pathol, I-20141 Milan, Italy
[5] IEO European Inst Oncol, Div Breast Surg, IRCCS, I-20141 Milan, Italy
[6] IEO European Inst Oncol IRCCS, Div Canc Prevent & Genet, I-20141 Milan, Italy
[7] Univ Milan, Dept Hlth Sci, Med Genet, I-20142 Milan, Italy
[8] Univ Milan, Dept Oncol & Hematooncol, I-20141 Milan, Italy
[9] European Canc Prevent Org ECP, I-20141 Milan, Italy
关键词
breast; imaging; pathology; risk factors; screening; women's health; CARCINOMA IN-SITU; ASSOCIATION; VARIANTS; RECLASSIFICATION; MAMMOGRAPHY; BIOMARKERS; GUIDELINES; GENETICS; NOMOGRAM; MUTATION;
D O I
10.2217/fon-2023-0365
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Breast cancer risk models represent the likelihood of developing breast cancer based on risk factors. They enable personalized interventions to improve screening programs. Radiologists identify mammographic density as a significant risk factor and test new imaging techniques. Pathologists provide data for risk assessment. Clinicians conduct individual risk assessments and adopt prevention strategies for high-risk subjects. Tumor genetic testing guides personalized screening and treatment decisions. Artificial intelligence (AI) in mammography integrates imaging, clinical, genetic and pathological data to develop risk models. Emerging imaging technologies, genetic testing and molecular profiling improve risk model accuracy. The complexity of the disease, limited data availability and model inputs are discussed. A multidisciplinary approach is essential for earlier detection and improved outcomes.
引用
收藏
页码:2547 / 2564
页数:18
相关论文
共 50 条
  • [21] A contemporary review of breast cancer risk factors and the role of artificial intelligence
    Nicolis, Orietta
    De Los Angeles, Denisse
    Taramasco, Carla
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [22] Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review
    Gastounioti, Aimilia
    Desai, Shyam
    Ahluwalia, Vinayak S.
    Conant, Emily F.
    Kontos, Despina
    BREAST CANCER RESEARCH, 2022, 24 (01)
  • [23] Artificial intelligence and imaging for risk prediction of pancreatic cancer: a narrative review
    Qureshi, Touseef Ahmad
    Javed, Sehrish
    Sarmadi, Tabasom
    Pandol, Stephen Jacob
    Li, Debiao
    CHINESE CLINICAL ONCOLOGY, 2022, 11 (01) : 1
  • [24] Personalized assessment and management of women at risk for breast cancer in North America
    Pruthi, Sandhya
    Heisey, Ruth
    Bevers, Therese
    WOMENS HEALTH, 2015, 11 (02) : 213 - 224
  • [25] Breast cancer risk assessment combined with a polygenic risk score in the general population for personalized screening
    Saghatchian, Mahasti
    Abehsera, Marc
    Sigal, Robert
    Gauthier, Emilien
    Helin, Valerie
    Villoing-Gaude, Laure
    Reyes, Cecile
    Rapinat, Audrey
    Gentien, David
    Golmard, Lisa
    Stoppa-Lyonnet, Dominique
    CANCER RESEARCH, 2021, 81 (04)
  • [26] Artificial intelligence for cancer-associated thrombosis risk assessment reply
    Khorana, Alok A.
    LANCET HAEMATOLOGY, 2018, 5 (09): : E391 - E392
  • [27] Breast Cancer Risk - Genes, Environment and Clinics
    Fasching, P. A.
    Ekici, A. B.
    Adamietz, B. R.
    Wachter, D. L.
    Hein, A.
    Bayer, C. M.
    Haeberle, L.
    Loehberg, C. R.
    Jud, S. M.
    Heusinger, K.
    Ruebner, M.
    Rauh, C.
    Bani, M. R.
    Lux, M. P.
    Schulz-Wendtland, R.
    Hartmann, A.
    Beckmann, M. W.
    GEBURTSHILFE UND FRAUENHEILKUNDE, 2011, 71 (12) : 1056 - 1066
  • [28] Contribution of a breast cancer polygenic risk score to mammography artificial intelligence models and breast density for long term breast cancer risk prediction
    Vachon, Celine
    Scott, Christopher
    Banerjee, Imon
    Moderno, Ramon Correa
    Hursh, Dan
    Jensen, Matthew
    Wang, Yvonne
    Brandt, Kathleen
    Kerlikowske, Karla
    Pruthi, Sandhya
    Couch, Fergus
    Winham, Stacey
    CANCER RESEARCH, 2024, 84 (09)
  • [29] Artificial intelligence and cardiac surgery risk assessment
    Nashef, Samer A. M.
    Ali, Jason
    EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2023, 63 (06)
  • [30] Artificial Intelligence Methods for Risk Assessment of Neuroblastoma
    Leblebici, A.
    Uncu, B.
    Onan, A.
    Baskin, Y.
    Olgun, N.
    PEDIATRIC BLOOD & CANCER, 2018, 65 : S271 - S271