Electrokinetic modelling of cone-jet electrosprays

被引:6
|
作者
Lopez-Herrera, J. M. [1 ]
Herrada, M. A. [1 ]
Ganan-Calvo, A. M. [1 ,2 ]
机构
[1] Univ Seville, Dept Ing Aerosp & Mec Fluidos, ETSI, Camino Descubrimientos S-N, Seville 41092, Spain
[2] Univ Seville, Lab Engn Energy & Environm Sustainabil, Seville 41092, Spain
关键词
electrohydrodynamic effects; capillary flows; electrokinetic flows; UNIVERSAL SCALING LAWS; ELECTROHYDRODYNAMICS; STABILITY; DYNAMICS; CHARGE; SPRAY; DROP;
D O I
10.1017/jfm.2023.315
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The physics of electrospray has been subject to an intense debate for three decades regarding the ultimate electrokinetics that determines the electric current and the size of the emitted droplets in the steady Taylor cone-jet mode (TCJ). In order to solve with a high degree of accuracy the complete electrokinetic structure of the TCJ, in this work, we have used the full Poisson-Nernst-Planck model electrokinetic equations, which have been solved using a high accuracy numerical scheme. We consider a formulation with no interfacial adsorption of ions, as in Mori & Young (J. Fluid Mech., vol. 855, 2018, pp. 67-130). Our simulations corroborate Mori and Young's conclusion that the classical leaky dielectric model (LDM) recovers the electrodiffusion theory for weak electrolytes when disregarding ion adsorption at the interface. However, for strong electrolytes, our results differ drastically from those provided by the LDM. In this case, we observe that the ion distribution, and consequently the conductivity in the bulk, can be strongly non-homogeneous. Given the rather universal validity of the LDM experimentally observed so far, we postulate that ion interfacial adsorption must be considered in the case of strong, highly dissociated electrolytes to retrieve the LDM limit, mostly for a cone jet operating in the vicinity of the minimum flow rate.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] The role of ambient gas in the electrospray cone-jet formation
    Dastourani, H.
    Jahannama, M. R.
    Eslami-Majd, A.
    HEAT AND MASS TRANSFER, 2023, 59 (12) : 2267 - 2284
  • [32] Evaporation of liquid during cone-jet mode electrospraying
    Grigoriev, DA
    Edirisinghe, MJ
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (01) : 437 - 439
  • [33] Jet break-up in electrohydrodynamic atomization in the cone-jet mode
    Hartman, RPA
    Brunner, DJ
    Camelot, DMA
    Marijnissen, JCM
    Scarlett, B
    JOURNAL OF AEROSOL SCIENCE, 2000, 31 (01) : 65 - 95
  • [34] Numerical Simulation of Cone-Jet Formation in Electrohydrodynamic Atomization
    Lim, Liang Kuang
    Hua, Jinsong
    Wang, Chi-Hwa
    Smith, Kenneth A.
    AICHE JOURNAL, 2011, 57 (01) : 57 - 78
  • [35] Theoretical and experimental studies of a novel cone-jet sensor
    Xie, TQ
    Yang, QP
    Jones, BE
    Butler, C
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2001, 50 (05) : 1081 - 1084
  • [36] Electrohydrodynamics of a Cone-Jet Flow at a High Relative Permittivity
    Subbotin, A. V.
    Semenov, A. N.
    JETP LETTERS, 2015, 102 (12) : 815 - 820
  • [37] Theoretical and experimental studies of a novel cone-jet sensor
    Xie, TQ
    Yang, QP
    Jones, BE
    Butler, C
    IMTC/2000: PROCEEDINGS OF THE 17TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE: SMART CONNECTIVITY: INTEGRATING MEASUREMENT AND CONTROL, 2000, : 587 - 590
  • [38] Electrospray cone-jet mode for weakly viscoelastic liquids
    Blanco-Trejo, S.
    Herrada, M. A.
    Ganan-Calvo, A. M.
    Montanero, Jose M.
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [39] The role of ambient gas in the electrospray cone-jet formation
    H. Dastourani
    M. R. Jahannama
    A. Eslami-Majd
    Heat and Mass Transfer, 2023, 59 : 2267 - 2284
  • [40] THE ELECTROHYDRODYNAMIC CONE-JET AT HIGH REYNOLDS-NUMBER
    MESTEL, AJ
    JOURNAL OF AEROSOL SCIENCE, 1994, 25 (06) : 1037 - 1047