A 3D printable alloy designed for extreme environments

被引:81
|
作者
Smith, Timothy M. [1 ]
Kantzos, Christopher A. [1 ]
Zarkevich, Nikolai A. [2 ]
Harder, Bryan J. [1 ]
Heczko, Milan [3 ]
Gradl, Paul R. [4 ]
Thompson, Aaron C. [5 ]
Mills, Michael J. [3 ]
Gabb, Timothy P. [1 ]
Lawson, John W. [2 ]
机构
[1] NASA Glenn Res Ctr, Cleveland, OH 44135 USA
[2] NASA Ames Res Ctr, Moffett Field, CA USA
[3] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH USA
[4] NASA Marshall Space Flight Ctr, Prop Dept, Huntsville, AL USA
[5] HX5 LLC, Ft Walton Beach, FL USA
基金
美国国家科学基金会;
关键词
HIGH-ENTROPY ALLOYS; MECHANICAL-PROPERTIES; HIGH-STRENGTH; CRCONI; MICROSTRUCTURE; DEPENDENCE; BEHAVIOR; IMPACT; SCALE;
D O I
10.1038/s41586-023-05893-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiprincipal-element alloys are an enabling class of materials owing to their impressive mechanical and oxidation-resistant properties, especially in extreme environments(1,2). Here we develop a new oxide-dispersion-strengthened NiCoCr-based alloy using a model-driven alloy design approach and laser-based additive manufacturing. This oxide-dispersion-strengthened alloy, called GRX-810, uses laser powder bed fusion to disperse nanoscale Y2O3 particles throughout the microstructure without the use of resource-intensive processing steps such as mechanical or in situ alloying(3,4). We show the successful incorporation and dispersion of nanoscale oxides throughout the GRX-810 build volume via high-resolution characterization of its microstructure. The mechanical results of GRX-810 show a twofold improvement in strength, over 1,000-fold better creep performance and twofold improvement in oxidation resistance compared with the traditional polycrystalline wrought Ni-based alloys used extensively in additive manufacturing at 1,093 ?(5,6). The success of this alloy highlights how model-driven alloy designs can provide superior compositions using far fewer resources compared with the 'trial-and-error' methods of the past. These results showcase how future alloy development that leverages dispersion strengthening combined with additive manufacturing processing can accelerate the discovery of revolutionary materials.
引用
收藏
页码:513 / +
页数:19
相关论文
共 50 条
  • [41] Ondule: Designing and Controlling 3D Printable Springs
    He, Liang
    Peng, Huaishu
    Lin, Michelle
    Konjeti, Ravikanth
    Guimbretiere, Francois
    Froehlich, Jon E.
    PROCEEDINGS OF THE 32ND ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY (UIST 2019), 2019, : 739 - 750
  • [42] 3D Printable Dynamic Hydrogel: As Simple as it Gets!
    Diaz, Aitor
    Herrada-Manchon, Helena
    Nunes, Juliana
    Lopez, Aitziber
    Diaz, Natividad
    Grande, Hans-Jurgen
    Loinaz, Iraida
    Fernandez, Manuel Alejandro
    Dupin, Damien
    MACROMOLECULAR RAPID COMMUNICATIONS, 2022, 43 (21)
  • [43] 3D printable optomechanical cage system with enclosure
    Winters, Brandon J.
    Shepler, David
    HARDWAREX, 2018, 3 : 62 - 81
  • [44] Development and Measurement of a 3D Printable Radar Absorber
    Pluss, Tobias
    Murk, Axel
    Vorst, Diana
    Noetel, Denis
    Schurch, Martin
    Wellig, Peter
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2024, 121 : 101 - 105
  • [45] A REVIEW OF 3D PRINTABLE CONSTRUCTION MATERIALS AND APPLICATIONS
    Lu, Bing
    Tan, Ming Jen
    Nan, Shunzhi
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 330 - 335
  • [46] 3D Printable Biocomposites with Tunable Environmental Degradability
    Gazdus, Hannah B.
    Shen, Sabrina C.
    Lee, Nicolas A.
    Buehler, Markus J.
    3D PRINTING AND ADDITIVE MANUFACTURING, 2024,
  • [47] 3D Printable Biophotopolymers for in Vivo Bone Regeneration
    Russmueller, Guenter
    Liska, Robert
    Stampfl, Juergen
    Heller, Christian
    Mautner, Andreas
    Macfelda, Karin
    Kapeller, Barbara
    Lieber, Roman
    Haider, Agnes
    Mika, Kathrin
    Schopper, Christian
    Perisanidis, Christos
    Seemann, Rudolf
    Moser, Doris
    MATERIALS, 2015, 8 (06): : 3685 - 3700
  • [48] Custom 3D Printable Silicones with Tunable Stiffness
    Durban, Matthew M.
    Lenhardt, Jeremy M.
    Wu, Amanda S.
    Small, Ward
    Bryson, Taylor M.
    Perez-Perez, Lemuel
    Nguyen, Du T.
    Gammon, Stuart
    Smay, James E.
    Duoss, Eric B.
    Lewicki, James P.
    Wilson, Thomas S.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2018, 39 (04)
  • [49] 3D printable tough silicone double networks
    Wallin, Thomas J.
    Simonsen, Leif-Erik
    Pan, Wenyang
    Wang, Kaiyang
    Giannelis, Emmanuel
    Shepherd, Robert F.
    Menguc, Yigit
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [50] A 3D Printable model of pulmonary arteriovenous malformations
    Olson, Holly
    Rochon, Paul
    FASEB JOURNAL, 2020, 34