The coming of age of interpretable and explainable machine learning models

被引:28
|
作者
Lisboa, P. J. G. [1 ]
Saralajew, S. [2 ]
Vellido, A. [3 ,4 ]
Fernandez-Domenech, R. [3 ,4 ]
Villmann, T. [5 ]
机构
[1] Liverpool John Moores Univ, Liverpool, England
[2] NEC Labs Europe GmbH, Heidelberg, Germany
[3] UPC BarcelonaTech, Dept Comp Sci, Barcelona, Spain
[4] UPC Res Ctr, IDEAI, Barcelona, Spain
[5] Univ Appl Sci Mittweida, Saxon Inst Comp Intelligence & Machine Learning, Mittweida, Germany
关键词
XAI; Interpretable ML; Explainable ML; Transparent AI; AUTOMATED DECISION-MAKING; NEURAL-NETWORKS; ARTIFICIAL-INTELLIGENCE; CLASSIFICATION; EXPLANATION;
D O I
10.1016/j.neucom.2023.02.040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine-learning-based systems are now part of a wide array of real-world applications seamlessly embedded in the social realm. In the wake of this realization, strict legal regulations for these systems are currently being developed, addressing some of the risks they may pose. This is the coming of age of the concepts of interpretability and explainability in machine-learning-based data analysis, which can no longer be seen just as an academic research problem. In this paper, we discuss explainable and interpretable machine learning as post hoc and ante-hoc strategies to address regulatory restrictions and highlight several aspects related to them, including their evaluation and assessment and the legal boundaries of application.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 50 条
  • [31] Application of interpretable machine learning models for the intelligent decision
    Li, Yawen
    Yang, Liu
    Yang, Bohan
    Wang, Ning
    Wu, Tian
    NEUROCOMPUTING, 2019, 333 : 273 - 283
  • [32] Explainable Machine Learning Models for Swahili News Classification
    Murindanyi, Sudi
    Brian, Yiiki Afedra
    Katumba, Andrew
    Nakatumba-Nabende, Joyce
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL, NLPIR 2023, 2023, : 12 - 18
  • [33] Explainable Machine Learning for Improving Logistic Regression Models
    Yang, Yimin
    Wu, Min
    2021 IEEE 19TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2021,
  • [34] Explainable machine learning models for Medicare fraud detection
    Hancock, John T.
    Bauder, Richard A.
    Wang, Huanjing
    Khoshgoftaar, Taghi M.
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [35] Discovering Interpretable Machine Learning Models in Parallel Coordinates
    Kovalerchuk, Boris
    Hayes, Dustin
    2021 25TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): AI & VISUAL ANALYTICS & DATA SCIENCE, 2021, : 181 - 188
  • [36] Explainable Activity Recognition over Interpretable Models
    Bettini, Claudio
    Civitarese, Gabriele
    Fiori, Michele
    2021 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2021, : 32 - 37
  • [37] Utilizing Macroeconomic Factors for Sector Rotation based on Interpretable Machine Learning and Explainable AI
    Zhu, Ye
    Yi, Chao
    Chen, Yixin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5505 - 5510
  • [38] Explainable Machine Learning
    Garcke, Jochen
    Roscher, Ribana
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (01): : 169 - 170
  • [39] Interpretable Machine Learning
    Chen V.
    Li J.
    Kim J.S.
    Plumb G.
    Talwalkar A.
    Queue, 2021, 19 (06): : 28 - 56
  • [40] Epileptic seizure detection by using interpretable machine learning models
    Zhao, Xuyang
    Yoshida, Noboru
    Ueda, Tetsuya
    Sugano, Hidenori
    Tanaka, Toshihisa
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)