Weighted residual self-attention graph-based transformer for spectral-spatial hyperspectral image classification

被引:3
|
作者
Zu, Baokai [1 ]
Wang, Hongyuan [1 ]
Li, Jianqiang [1 ]
He, Ziping [2 ,3 ]
Li, Yafang [1 ]
Yin, Zhixian [2 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin, Peoples R China
[3] Helmholtz Zentrum Dresden Rossendorf, Helmholtz Inst Freiberg Resource Technol, Freiberg, Germany
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Hyperspectral image classification; transformer; Weighted Residual Self-attention Graph-based Transformer; deep learning; FEATURE FUSION; NETWORKS;
D O I
10.1080/01431161.2023.2171744
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Recently, deep learning for hyperspectral image classification has been successfully applied, and some convolutional neural network (CNN)-based models already achieved attractive classification results. Since hyperspectral data is a spectral-spatial cube data that can generally be considered as sequential data along with the spectral dimension, CNN models perform poorly on such a sequential data. Unlike convolutional neural networks (CNNs) that mainly concern with local relationship models in images, transformer has been shown to be a powerful structure for qualifying sequential data. In the SA (self-attention) module of ViT, each token is updated through aggregating all token's features based on the self-attention graph. Through this, tokens can exchange information sufficiently among each other which provides a powerful representation capability. However, as the layers become deeper, the transformer model suffers from network degradation. Therefore, in order to improve the layer-to-layer information exchange and alleviate the network degradation problem, we propose a Weighted Residual Self-attention Graph-based Transformer (RSAGformer) model for hyperspectral image classification with respect to the self-attention mechanism. It effectively solves the network degradation problem of deep transformer model by fusing the self-attention information between adjacent layers and extracts the information of data effectively. Extensive experiment evaluation with six public hyperspectral datasets shows that the RSAGformer yields competitive results for classification.
引用
收藏
页码:852 / 877
页数:26
相关论文
共 50 条
  • [41] Hierarchical Unified Spectral-Spatial Aggregated Transformer for Hyperspectral Image Classification
    Zhou, Weilian
    Kamata, Sei-Ichiro
    Luo, Zhengbo
    Chen, Xiaoyue
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3041 - 3047
  • [42] Spectral-Spatial Transformer for Hyperspectral Image Sharpening
    Chen, Lihui
    Vivone, Gemine
    Qin, Jiayi
    Chanussot, Jocelyn
    Yang, Xiaomin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [43] MSTNet: A Multilevel Spectral-Spatial Transformer Network for Hyperspectral Image Classification
    Yu, Haoyang
    Xu, Zhen
    Zheng, Ke
    Hong, Danfeng
    Yang, Hao
    Song, Meiping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] Multiscale Dual-Branch Residual Spectral-Spatial Network With Attention for Hyperspectral Image Classification
    Ghaderizadeh, Saeed
    Abbasi-Moghadam, Dariush
    Sharifi, Alireza
    Tariq, Aqil
    Qin, Shujing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5455 - 5467
  • [45] Dilated Spectral-Spatial Gaussian Transformer Net for Hyperspectral Image Classification
    Zhang, Zhenbei
    Wang, Shuo
    Zhang, Weilin
    REMOTE SENSING, 2024, 16 (02)
  • [46] HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTI-LEVEL SPECTRAL-SPATIAL TRANSFORMER NETWORK
    Yang, Hao
    Yu, Haoyang
    Hong, Danfeng
    Xu, Zhen
    Wang, Yulei
    Song, Meiping
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [47] Spectral-Spatial Graph Convolutional Networks for Semisupervised Hyperspectral Image Classification
    Qin, Anyong
    Shang, Zhaowei
    Tian, Jinyu
    Wang, Yulong
    Zhang, Taiping
    Tang, Yuan Yan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (02) : 241 - 245
  • [48] Spectral-spatial dynamic graph convolutional network for hyperspectral image classification
    Chen, Rong
    Li, Guanghui
    Dai, Chenglong
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3679 - 3695
  • [49] A spatial–spectral fusion convolutional transformer network with contextual multi-head self-attention for hyperspectral image classification
    Wang, Wuli
    Sun, Qi
    Zhang, Li
    Ren, Peng
    Wang, Jianbu
    Ren, Guangbo
    Liu, Baodi
    Neural Networks, 2025, 187
  • [50] Embedding Learning on Spectral-Spatial Graph for Semisupervised Hyperspectral Image Classification
    Cao, Jiayan
    Wang, Bin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (10) : 1805 - 1809