Diffusion process;
Discrete time maximum;
Probability density function;
Malliavin calculus;
Asymptotic behavior;
Laplace?s method;
ABSOLUTE CONTINUITY;
SMOOTHNESS;
SUPREMUM;
BARRIER;
GREEKS;
LAW;
D O I:
10.1016/j.amc.2022.127672
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This article focuses on the probability density functions related to the discrete time max-imum of some one-dimensional diffusion processes. Firstly, we shall consider solutions of one-dimensional stochastic differential equations and prove an integration by parts for-mula on the discrete time maximum of the solutions. The smoothness, expressions and upper bounds of the density function will be obtained by the formula. Secondly, Gaussian processes will be dealt with. For some Gaussian processes, we shall obtain asymptotic be-haviors of the density functions related to the discrete time maximum of the processes. The Malliavin calculus and Laplace's method play important roles for the proofs.(c) 2022 Elsevier Inc. All rights reserved.
机构:
Univ Paris Est, Lab Anal & Math Appl, CNRS, Fac Sci & Technol,UMR 8050, F-94010 Creteil, FranceUniv Paris Est, Lab Anal & Math Appl, CNRS, Fac Sci & Technol,UMR 8050, F-94010 Creteil, France
Fournier, Nicolas
Printems, Jacques
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Lab Anal & Math Appl, CNRS, Fac Sci & Technol,UMR 8050, F-94010 Creteil, FranceUniv Paris Est, Lab Anal & Math Appl, CNRS, Fac Sci & Technol,UMR 8050, F-94010 Creteil, France
机构:
Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, VietnamTon Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
Nguyen Tien Dung
Ta Cong Son
论文数: 0引用数: 0
h-index: 0
机构:
Hanoi Univ Sci, Dept Math, 334 Nguyen Trai, Hanoi, VietnamTon Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam