CMFCUNet: cascaded multi-scale feature calibration UNet for pancreas segmentation

被引:7
|
作者
Qiu, Chengjian [1 ]
Song, Yuqing [1 ]
Liu, Zhe [1 ]
Yin, Jing [1 ]
Han, Kai [1 ]
Liu, Yi [1 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Pancreas segmentation; Coarse-to-fine approaches; Multi-scale feature calibration; Convolutional neural networks; CT; ATTENTION; IMAGES; NET;
D O I
10.1007/s00530-022-01020-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Segmenting the pancreas from abdominal CT scans is challenging since it often takes up a relatively small region. Researchers suggested leveraging coarse-to-fine approaches to cope with this challenge. However, the coarse-scaled segmentation and the fine-scaled segmentation are either trained separately utilizing the coordinates located by the coarse-scaled segmentation mask to crop the fine-scaled segmentation input, or trained jointly utilizing the coarse-scaled segmentation mask to enhance the fine-scaled segmentation input. We argued that these two solutions are complementary to some extent and can promote each other to improve the performance of pancreas segmentation. In addition, the backbone in the coarse-scaled segmentation and fine-scaled segmentation is mostly based on UNet or UNet-like networks, where the multi-scale features transmitted from the encoder to the decoder have not been explored for vertical calibration before. In this paper, we propose a cascaded multi-scale feature calibration UNet (CMFCUNet) for pancreas segmentation where the multi-scale features in the backbone of each scaled segmentation are calibrated vertically in a pixel-wise fashion. Besides, the coarse-scaled segmentation and the fine-scaled segmentation are connected by leveraging a designed dual enhancement module (DEM). Experiments are first conducted on the public NIH pancreas dataset. First, when leveraging CMFCUNet, our method increased by over 3% on the Jaccard index (JI) and nearly 1% on dice similarity coefficient (DSC) which surpasses all existing pancreas segmentation approaches. In addition, our experiments demonstrate that CMFCUNet improved the coarse-to-fine segmentation framework and outperformed the mainstream coarse-to-fine pancreas segmentation approaches. Furthermore, we also conducted ablation studies to analyze the effectiveness of the backbone (MFCUNet) and the DEM. In addition to the experiments on the NIH dataset, we also experimentally demonstrate the excellent generalization of our method on the MSD pancreas dataset.
引用
收藏
页码:871 / 886
页数:16
相关论文
共 50 条
  • [41] Res2Unet: A multi-scale channel attention network for retinal vessel segmentation
    Li, Xuejian
    Ding, Jiaqi
    Tang, Jijun
    Guo, Fei
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14): : 12001 - 12015
  • [42] Retinal vessel segmentation based on multi-scale feature and style transfer
    Zheng, Caixia
    Li, Huican
    Ge, Yingying
    He, Yanlin
    Yi, Yugen
    Zhu, Meili
    Sun, Hui
    Kong, Jun
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 49 - 74
  • [43] Multi-scale feature fusion network with local attention for lung segmentation
    Xie, Yinghua
    Zhou, Yuntong
    Wang, Chen
    Ma, Yanshan
    Yang, Ming
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 119
  • [44] Multi-scale feature pyramid fusion network for medical image segmentation
    Zhang, Bing
    Wang, Yang
    Ding, Caifu
    Deng, Ziqing
    Li, Linwei
    Qin, Zesheng
    Ding, Zhao
    Bian, Lifeng
    Yang, Chen
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (02) : 353 - 365
  • [45] LTUNet: A Lightweight Transformer-Based UNet with Multi-scale Mechanism for Skin Lesion Segmentation
    Guo, Huike
    Zhang, Han
    Li, Minghe
    Quan, Xiongwen
    ARTIFICIAL INTELLIGENCE, CICAI 2023, PT II, 2024, 14474 : 147 - 158
  • [46] Res2Unet: A multi-scale channel attention network for retinal vessel segmentation
    Xuejian Li
    Jiaqi Ding
    Jijun Tang
    Fei Guo
    Neural Computing and Applications, 2022, 34 : 12001 - 12015
  • [47] Context Contrasted Feature and Gated Multi-scale Aggregation for Scene Segmentation
    Ding, Henghui
    Jiang, Xudong
    Shuai, Bing
    Liu, Ai Qun
    Wang, Gang
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2393 - 2402
  • [48] A Segmentation Algorithm of Colonoscopy Images Based on Multi-Scale Feature Fusion
    Yu, Jing
    Li, Zhengping
    Xu, Chao
    Feng, Bo
    ELECTRONICS, 2022, 11 (16)
  • [49] Multi-scale feature pyramid fusion network for medical image segmentation
    Bing Zhang
    Yang Wang
    Caifu Ding
    Ziqing Deng
    Linwei Li
    Zesheng Qin
    Zhao Ding
    Lifeng Bian
    Chen Yang
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 353 - 365
  • [50] Regional perception and multi-scale feature fusion network for cardiac segmentation
    Lu, Chenggang
    Yuan, Jinli
    Xia, Kewen
    Guo, Zhitao
    Chen, Muxuan
    Yu, Hengyong
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (10):