Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle

被引:0
|
作者
Brunes, Ludmilla Costa [1 ]
de Faria, Carina Ubirajara [2 ]
Magnabosco, Claudio Ulhoa [1 ]
Lobo, Raysildo Barbosa [3 ]
Peripolli, Elisa [4 ]
Aguilar, Ignacio [5 ]
Baldi, Fernando [4 ]
机构
[1] Embrapa Cerrados, Anim Performance Ctr, BR-73310970 Planaltina, Brazil
[2] Univ Fed Uberlandia, Coll Vet Med, BR-38410337 Uberlandia, MG, Brazil
[3] Natl Assoc Breeders & Researchers, BR-14020230 Ribeirao Preto, Brazil
[4] Sao Paulo State Univ, Coll Agr & Vet Sci, Dept Anim Sci, UNESP, BR-14884900 Jaboticabal, Brazil
[5] Inst Nacl Invest Agr INIA, Montevideo 11500, Uruguay
关键词
Accuracy; Beef cattle; Bos taurus indicus; Feed efficiency; Genomic selection; Residual feed intake equation; DRY-MATTER INTAKE; EFFICIENCY TRAITS; WEIGHT-GAIN; PROGENY; DAIRY;
D O I
10.1007/s13353-022-00734-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI.
引用
下载
收藏
页码:159 / 167
页数:9
相关论文
共 50 条
  • [1] Genomic prediction ability and genetic parameters for residual feed intake calculated using different approaches and their associations with growth, reproductive, and carcass traits in Nellore cattle
    Ludmilla Costa Brunes
    Carina Ubirajara de Faria
    Cláudio Ulhoa Magnabosco
    Raysildo Barbosa Lobo
    Elisa Peripolli
    Ignacio Aguilar
    Fernando Baldi
    Journal of Applied Genetics, 2023, 64 : 159 - 167
  • [2] Estimates of genetic parameters for carcass, growth and reproductive traits in Nellore cattle
    Caetano, S. L.
    Savegnago, R. P.
    Boligon, A. A.
    Ramos, S. B.
    Chud, T. C. S.
    Lobo, R. B.
    Munari, D. P.
    LIVESTOCK SCIENCE, 2013, 155 (01) : 1 - 7
  • [3] Residual feed intake, carcass traits and meat quality in Nellore cattle
    Fidelis, H. A.
    Bonilha, S. F. M.
    Tedeschi, L. O.
    Branco, R. H.
    Cyrillo, J. N. S. G.
    Mercadante, M. E. Z.
    MEAT SCIENCE, 2017, 128 : 34 - 39
  • [4] Genetic association between residual feed intake and carcass traits in a herd it of Nellore beef cattle
    Abreu, L. R. A.
    Martins, P. G. M. A.
    Ribeiro, V. M. P.
    Gouveia, G. C.
    Moraes, G. F.
    LIVESTOCK SCIENCE, 2019, 225 : 53 - 61
  • [5] Genomic prediction ability for carcass composition indicator traits in Nellore cattle
    Silva, Rosiane P.
    Espigolan, Rafael
    Berton, Mariana P.
    Lobo, Raysildo B.
    Magnabosco, Claudio U.
    Pereira, Angelica S. C.
    Baldi, Fernando
    LIVESTOCK SCIENCE, 2021, 245
  • [6] Residual feed intake and gain alters the performance and carcass traits in Nellore cattle
    Luís Miguel Gonçalves Fernandes
    Giovanna Faria de Moraes
    Idael Matheus Góes Lopes
    Luiza Rodrigues Alves Abreu
    Amália Saturnino Chaves
    Tropical Animal Health and Production, 2024, 56 (8)
  • [7] Economic values of reproductive, growth, feed efficiency and carcass traits in Nellore cattle
    Souza, Flavia M.
    Lopes, Fernando B.
    Rosa, Guilherme J. M.
    Magnabosco, Claudio U.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2022, 139 (02) : 170 - 180
  • [8] Genetic association between different criteria to define sexual precocious heifers with growth, carcass, reproductive and feed efficiency indicator traits in Nellore cattle using genomic information
    Bonamy, Martin
    Kluska, Sabrina
    Peripolli, Elisa
    Antunes de Lemos, Marcos Vinicius
    Amorim, Sabrina Thaise
    Jose Vaca, Roberto
    Lobo, Raysildo Barbosa
    de Castro, Leticia Mendes
    de Faria, Carina Ubirajara
    Ferrari, Fabio Borba
    Baldi, Fernando
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2019, 136 (01) : 15 - 22
  • [9] Genetic parameters for visual scores, growth and carcass traits in Nellore Cattle
    Soares, Byanka B.
    Brunes, Ludmilla C.
    Baldi, Fernando Sebastian
    Do Carmo, Adriana S.
    Pereira, Leticia S.
    Carvalho, Rafael A.
    Narciso, Marcelo G.
    Amorim, Sabrina T.
    Sainz, Roberto Daniel
    Magnabosco, Claudio U.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2024, 96 (01):
  • [10] Estimation of genetic parameters for methane emissions and residual feed intake in Nellore cattle
    Sainz, Roberto D.
    Baldi, Fernando S.
    Temp, Larissa B.
    Ribeiro, Luciano B.
    JOURNAL OF ANIMAL SCIENCE, 2024, 102 : 678 - 679