Deep autoregressive models with spectral attention

被引:6
|
作者
Moreno-Pino, Fernando [1 ]
Olmos, Pablo M. [1 ]
Artes-Rodriguez, Antonio [1 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, Madrid, Spain
基金
欧洲研究理事会;
关键词
Attention models; Deep learning; Filtering; Global -local contexts; Signal processing; Spectral domain attention; Time series forecasting; TIME; TRANSFORMER; NETWORKS;
D O I
10.1016/j.patcog.2022.109014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series forecasting is an important problem across many domains, playing a crucial role in multiple real-world applications. In this paper, we propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module, which merges global and local frequency domain information in the model's embedded space. By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns. Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise. The proposed architecture has a number of useful properties: it can be effectively incorporated into well-known forecast architectures, requiring a low number of parameters and producing explainable results that improve forecasting accuracy. We test the Spectral Attention Autoregressive Model (SAAM) on several well-known forecast datasets, consistently demonstrating that our model compares favorably to state-of-the-art approaches. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] LOSS OF SPECTRAL PEAKS IN AUTOREGRESSIVE SPECTRAL ESTIMATION
    LYSNE, D
    TJOSTHEIM, D
    BIOMETRIKA, 1987, 74 (01) : 200 - 206
  • [22] Deep AutoRegressive Networks
    Gregor, Karol
    Danihelka, Ivo
    Mnih, Andriy
    Blundell, Charles
    Wierstra, Daan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1242 - 1250
  • [23] BIAS OF AUTOREGRESSIVE SPECTRAL ESTIMATORS
    STINE, RA
    SHAMAN, P
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (412) : 1091 - 1098
  • [24] Autoregressive spatial spectral estimates
    Gupta, Abhimanyu
    JOURNAL OF ECONOMETRICS, 2018, 203 (01) : 80 - 95
  • [25] Bayesian autoregressive spectral estimation
    Cuevas, Alejandro
    Lopez, Sebastian
    Mandic, Danilo
    Tobar, Felipe
    2021 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2021,
  • [26] CONSISTENT AUTOREGRESSIVE SPECTRAL ESTIMATES
    BERK, KN
    ANNALS OF STATISTICS, 1974, 2 (03): : 489 - 502
  • [27] Deep Attention Models for Human Tracking Using RGBD
    Rasoulidanesh, Maryamsadat
    Yadav, Srishti
    Herath, Sachini
    Vaghei, Yasaman
    Payandeh, Shahram
    SENSORS, 2019, 19 (04)
  • [28] A Data-Driven Newsvendor Problem with Shifting Demand: A Deep Autoregressive Model with Attention Mechanism
    Li X.
    Hu Y.
    Su X.
    Shao B.
    Journal of Engineering Science and Technology Review, 2023, 16 (03) : 74 - 83
  • [29] AN OPTIMAL AUTOREGRESSIVE SPECTRAL ESTIMATE
    SHIBATA, R
    ANNALS OF STATISTICS, 1981, 9 (02): : 300 - 306
  • [30] ON THE THRESHOLD AUTOREGRESSIVE MODELS
    HILI, O
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (07): : 573 - 576