Deep autoregressive models with spectral attention

被引:6
|
作者
Moreno-Pino, Fernando [1 ]
Olmos, Pablo M. [1 ]
Artes-Rodriguez, Antonio [1 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, Madrid, Spain
基金
欧洲研究理事会;
关键词
Attention models; Deep learning; Filtering; Global -local contexts; Signal processing; Spectral domain attention; Time series forecasting; TIME; TRANSFORMER; NETWORKS;
D O I
10.1016/j.patcog.2022.109014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series forecasting is an important problem across many domains, playing a crucial role in multiple real-world applications. In this paper, we propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module, which merges global and local frequency domain information in the model's embedded space. By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns. Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise. The proposed architecture has a number of useful properties: it can be effectively incorporated into well-known forecast architectures, requiring a low number of parameters and producing explainable results that improve forecasting accuracy. We test the Spectral Attention Autoregressive Model (SAAM) on several well-known forecast datasets, consistently demonstrating that our model compares favorably to state-of-the-art approaches. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Autoregressive models of singular spectral matrices
    Anderson, Brian D. O.
    Deistler, Manfred
    Chen, Weitian
    Filler, Alexander
    AUTOMATICA, 2012, 48 (11) : 2843 - 2849
  • [2] MULTIDIMENSIONAL SPECTRAL FACTORIZATION AND UNILATERAL AUTOREGRESSIVE MODELS
    GOODMAN, DM
    EKSTROM, MP
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (02) : 258 - 262
  • [3] Learning deep autoregressive models for hierarchical data
    Andersson, Carl R.
    Wahlstrom, Niklas
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2021, 54 (07): : 529 - 534
  • [4] Blockwise Parallel Decoding for Deep Autoregressive Models
    Stern, Mitchell
    Shazeer, Noam
    Uszkoreit, Jakob
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [5] Multi-spectral decomposition of functional autoregressive models
    Salmeron, R.
    Ruiz-Medina, M. D.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (03) : 289 - 297
  • [6] Multi-spectral decomposition of functional autoregressive models
    R. Salmerón
    M. D. Ruiz-Medina
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 289 - 297
  • [7] Autoregressive Deep Learning Models for Bridge Strain Prediction
    Psathas, Anastasios Panagiotis
    Iliadis, Lazaros
    Achillopoulou, Dimitra V.
    Papaleonidas, Antonios
    Stamataki, Nikoleta K.
    Bountas, Dimitris
    Dokas, Ioannis M.
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022, 2022, 1600 : 150 - 164
  • [8] Generating Structurally Realistic Models With Deep Autoregressive Networks
    Lopez, Jose Antonio Hernandez
    Cuadrado, Jesus Sanchez
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (04) : 2661 - 2676
  • [9] A COMPLETE SPECTRAL CHARACTERIZATION OF QUARTER-PLANE AUTOREGRESSIVE MODELS
    LAWTON, WM
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (06): : 1617 - 1619
  • [10] SPECTRAL ANALYSIS OF ELECTROMYOGRAM - FITTING OF AUTOREGRESSIVE MODELS TO INTERFERENCE EMG
    BRAUER, D
    KRAMER, H
    LUN, A
    KUCHLER, G
    ACTA BIOLOGICA ET MEDICA GERMANICA, 1975, 34 (05) : 805 - 810