Automated Skin Cancer Detection and Classification using Cat Swarm Optimization with a Deep Learning Model

被引:0
|
作者
Rajendran, Vijay Arumugam [1 ]
Shanmugam, Saravanan [2 ]
机构
[1] Govt Arts & Sci Coll, Dept Comp Sci, Avinashi, India
[2] Annamalai Univ, Dept Comp & Informat Sci, Chidambaran, India
关键词
skin cancer; dermoscopic images; deep learning; cat swarm optimization; computer-aided diagnosis;
D O I
10.48084/etasr.6681
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The application of Computer Vision (CV) and image processing in the medical sector is of great significance, especially in the recognition of skin cancer using dermoscopic images. Dermoscopy denotes a non-invasive imaging system that offers clear visuals of skin cancers, allowing dermatologists to analyze and identify various features crucial for lesion assessment. Over the past few years, there has been an increasing fascination with Deep Learning (DL) applications for skin cancer recognition, with a particular focus on the impressive results achieved by Deep Neural Networks (DNNs). DL approaches, predominantly CNNs, have exhibited immense potential in automating the classification and detection of skin cancers. This study presents an Automated Skin Cancer Detection and Classification method using Cat Swarm Optimization with Deep Learning (ASCDC-CSODL). The main objective of the ASCDC-CSODL method is to enforce the DL model to recognize and classify skin tumors on dermoscopic images. In ASCDCCSODL, Bilateral Filtering (BF) is applied for noise elimination and U-Net is employed for the segmentation process. Moreover, the ASCDC-CSODL method exploits MobileNet for the feature extraction process. The Gated Recurrent Unit (GRU) approach is used for the classification of skin cancer. Finally, the CSO algorithm alters the hyperparameter values of GRU. A wide-ranging simulation was performed to evaluate the performance of the ASCDC-CSODL model, demonstrating the significantly improved results of the ASCDC-CSODL model over other approaches.
引用
下载
收藏
页码:12734 / 12739
页数:6
相关论文
共 50 条
  • [31] Automated detection and classification for early stage lung cancer on CT images using deep learning
    Nasrullah
    Sang, Jun
    Alam, Mohammad S.
    Xiang, Hong
    PATTERN RECOGNITION AND TRACKING XXX, 2019, 10995
  • [32] Deep learning-based computer aided diagnosis model for skin cancer detection and classification
    Adla, Devakishan
    Reddy, G. Venkata Rami
    Nayak, Padmalaya
    Karuna, G.
    DISTRIBUTED AND PARALLEL DATABASES, 2022, 40 (04) : 717 - 736
  • [33] Deep learning-based computer aided diagnosis model for skin cancer detection and classification
    Devakishan Adla
    G. Venkata Rami Reddy
    Padmalaya Nayak
    G. Karuna
    Distributed and Parallel Databases, 2022, 40 : 717 - 736
  • [34] Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model
    Shankar, K.
    Sait, Abdul Rahaman Wahab
    Gupta, Deepak
    Lakshmanaprabu, S. K.
    Khanna, Ashish
    Pandey, Hari Mohan
    PATTERN RECOGNITION LETTERS, 2020, 133 : 210 - 216
  • [35] Automated sarcasm detection and classification using hyperparameter tuned deep learning model for social networks
    Vinoth, Dakshnamoorthy
    Prabhavathy, Panneer
    EXPERT SYSTEMS, 2022, 39 (10)
  • [36] Lung Cancer Detection and Classification using Deep Learning
    Tekade, Ruchita
    Rajeswari, K.
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [37] Classification of Skin Cancer Lesions Using Explainable Deep Learning
    Rehman, Muhammad Zia Ur
    Ahmed, Fawad
    Alsuhibany, Suliman A.
    Jamal, Sajjad Shaukat
    Ali, Muhammad Zulfiqar
    Ahmad, Jawad
    SENSORS, 2022, 22 (18)
  • [38] Automated detection and classification of early AMD biomarkers using deep learning
    Sajib Saha
    Marco Nassisi
    Mo Wang
    Sophiana Lindenberg
    Yogi kanagasingam
    Srinivas Sadda
    Zhihong Jewel Hu
    Scientific Reports, 9
  • [39] Automated Diabetic Foot Ulcer Detection and Classification Using Deep Learning
    Nagaraju, Sunnam
    Kumar, Kollati Vijaya
    Rani, B. Prameela
    Lydia, E. Laxmi
    Ishak, Mohamad Khairi
    Filali, Imen
    Karim, Faten Khalid
    Mostafa, Samih M.
    IEEE ACCESS, 2023, 11 : 127578 - 127588
  • [40] Automated detection and classification of shoulder arthroplasty models using deep learning
    Yi, Paul H.
    Kim, Tae Kyung
    Wei, Jinchi
    Li, Xinning
    Hager, Gregory D.
    Sair, Haris, I
    Fritz, Jan
    SKELETAL RADIOLOGY, 2020, 49 (10) : 1623 - 1632