Sequential recommendation based on multipair contrastive learning with informative augmentation

被引:0
|
作者
Yin, Pei [1 ,2 ]
Zhao, Jun [1 ]
Ma, Zi-jie [1 ]
Tan, Xiao [1 ]
机构
[1] Univ Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R China
[2] Univ Shanghai Sci & Technol, Sch Intelligent Emergency Management, Shanghai 200093, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 36卷 / 17期
关键词
Sequential recommendation; Data sparsity; Self-attention network; Contrastive learning; Representation learning;
D O I
10.1007/s00521-023-09044-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To solve the recommendation accuracy degradation problem encountered in sequential recommendation cases caused by data sparsity-such as short historical user behaviour sequences and limited information-this paper proposes a sequential recommendation model based on multipair contrastive learning with informative augmentation (IA-MPCL). The model aims to better learn user preference representations. Initially, a self-attention network is utilized to maintain the intrinsic relevance of the original sequences and introduce virtual interaction items for short sequences to achieve informative enhancement. Subsequently, multiple positive samples are generated by data augmentation methods to form multiple pairs of positive and negative samples. A multipair contrastive loss is constructed to eliminate the negative impact of fake positive and negative samples on the training process of the self-attention network. Finally, an adaptive loss weighting mechanism is proposed to dynamically regulate the role of the contrastive loss during multitask training. Through comparison experiments involving baseline methods and experiments conducted on datasets with different sparsity levels, the results show that IA-MPCL achieves significant improvements in terms of both recommendation accuracy and data sparsity resistance.
引用
收藏
页码:9707 / 9721
页数:15
相关论文
共 50 条
  • [21] Intent Contrastive Learning with Cross Subsequences for Sequential Recommendation
    Qin, Xiuyuan
    Yuan, Huanhuan
    Zhao, Pengpeng
    Liu, Guanfeng
    Zhuang, Fuzhen
    Sheng, Victor S.
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 548 - 556
  • [22] HICL: Hierarchical Intent Contrastive Learning for sequential recommendation
    Kang Y.
    Yuan Y.
    Pu B.
    Yang Y.
    Zhao L.
    Guo J.
    Expert Systems with Applications, 2024, 251
  • [23] Reliable Data Augmented Contrastive Learning for Sequential Recommendation
    Zhao, Mankun
    Sun, Aitong
    Yu, Jian
    Li, Xuewei
    He, Dongxiao
    Yu, Ruiguo
    Yu, Mei
    IEEE Transactions on Big Data, 2024, 10 (06): : 694 - 705
  • [24] TFCSRec: Time-frequency consistency based contrastive learning for sequential recommendation
    Xiao, Yadong
    Huang, Jiajin
    Yang, Jian
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245
  • [25] Graphormer based contrastive learning for recommendation
    Wang, Jing
    Ren, Jiangtao
    APPLIED SOFT COMPUTING, 2024, 159
  • [26] Soft Contrastive Sequential Recommendation
    Zhang, Yabin
    Wang, Zhenlei
    Yu, Wenhui
    Hu, Lantao
    Jiang, Peng
    Gai, Kun
    Chen, Xu
    ACM Transactions on Information Systems, 2024, 42 (06)
  • [27] Periodicity May Be Emanative: Hierarchical Contrastive Learning for Sequential Recommendation
    Tian, Changxin
    Hu, Binbin
    Zhao, Wayne Xin
    Zhang, Zhiqiang
    Zhou, Jun
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2442 - 2451
  • [28] Graphical contrastive learning for multi-interest sequential recommendation
    Liang, Shunpan
    Kong, Qianjin
    Lei, Yu
    Li, Chen
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 259
  • [29] Multi-behavior collaborative contrastive learning for sequential recommendation
    Chen, Yuzhe
    Cao, Qiong
    Huang, Xianying
    Zou, Shihao
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (04) : 5033 - 5048
  • [30] Item Attribute-Aware Contrastive Learning for Sequential Recommendation
    Yan, Bing
    Wang, Huaxing
    Ouyang, Zijie
    Chen, Chao
    Xia, Yang
    IEEE ACCESS, 2023, 11 (70795-70804): : 70795 - 70804