Using Deep Learning for Flexible and Scalable Earthquake Forecasting

被引:6
|
作者
Dascher-Cousineau, Kelian [1 ,2 ]
Shchur, Oleksandr [3 ]
Brodsky, Emily E. [1 ]
Guennemann, Stephan [3 ]
机构
[1] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA
[2] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[3] Tech Univ Munich, Munich Data Sci Inst, Dept Comp Sci, Munich, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
earthquake; forecasting; machine learning; RECAST; ETAS; seismology; ETAS MODEL; CATALOG; AFTERSHOCKS; CALIFORNIA; MAGNITUDE; REGION;
D O I
10.1029/2023GL103909
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Seismology is witnessing explosive growth in the diversity and scale of earthquake catalogs. A key motivation for this community effort is that more data should translate into better earthquake forecasts. Such improvements are yet to be seen. Here, we introduce the Recurrent Earthquake foreCAST (RECAST), a deep-learning model based on recent developments in neural temporal point processes. The model enables access to a greater volume and diversity of earthquake observations, overcoming the theoretical and computational limitations of traditional approaches. We benchmark against a temporal Epidemic Type Aftershock Sequence model. Tests on synthetic data suggest that with a modest-sized data set, RECAST accurately models earthquake-like point processes directly from cataloged data. Tests on earthquake catalogs in Southern California indicate improved fit and forecast accuracy compared to our benchmark when the training set is sufficiently long (>10(4) events). The basic components in RECAST add flexibility and scalability for earthquake forecasting without sacrificing performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Forecasting Banana Harvest Yields using Deep Learning
    Rebortera, Mariannie
    Fajardo, Arnel
    2019 IEEE 9TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET), 2019, : 380 - 384
  • [32] Forecasting the Disease Using Discrete Deep Learning Algorithms
    Sri Nagesh O.
    Laxmi Kanth P.
    Raja Vikram G.
    Ramakrishna Reddy K.
    SN Computer Science, 4 (4)
  • [33] Forecasting of Electricity Prices using Deep Learning Networks
    Zhang, Wenjie
    Cheema, Farwa
    Srinivasan, Dipti
    2018 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2018,
  • [34] Stock Price Forecasting Using Deep Learning Model
    Khan, Shahnawaz
    Rabbani, Mustafa Raza
    Bashar, Abu
    Kamal, Mustafa
    2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), 2021,
  • [35] Solar Power Forecasting Using Deep Learning Techniques
    Elsaraiti, Meftah
    Merabet, Adel
    IEEE ACCESS, 2022, 10 : 31692 - 31698
  • [36] Predicting and forecasting water quality using deep learning
    Debow, Ahmad
    Shweikani, Samaah
    Aljoumaa, Kadan
    INTERNATIONAL JOURNAL OF SUSTAINABLE AGRICULTURAL MANAGEMENT AND INFORMATICS, 2023, 9 (02) : 114 - 135
  • [37] Forecasting Pseudo Random Numbers Using Deep Learning
    Amigo, Glauco
    Dong, Liang
    Ii, Robert J. Marks
    2021 15TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2021,
  • [38] Cryptocurrency direction forecasting using deep learning algorithms
    Rahmani Cherati, Mahdiye
    Haeri, Abdorrahman
    Ghannadpour, Seyed Farid
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (12) : 2475 - 2489
  • [39] Analysis of Earthquake Forecasting in India Using Supervised Machine Learning Classifiers
    Debnath, Papiya
    Chittora, Pankaj
    Chakrabarti, Tulika
    Chakrabarti, Prasun
    Leonowicz, Zbigniew
    Jasinski, Michal
    Gono, Radomir
    Jasinska, Elzbieta
    SUSTAINABILITY, 2021, 13 (02) : 1 - 13
  • [40] Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques
    T. Rajasundrapandiyanleebanon
    K. Kumaresan
    Sakthivel Murugan
    M. S. P. Subathra
    Mahima Sivakumar
    Archives of Computational Methods in Engineering, 2023, 30 (5) : 3059 - 3079