Workability, autogenous shrinkage and microstructure of alkali-activated slag/fly ash slurries: Effect of precursor composition and sodium silicate modulus

被引:21
|
作者
Luo, Ling [1 ,2 ]
Yao, Wu [1 ]
Liang, Guangwei [1 ]
Luo, Yu [3 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Key Lab Adv Civil Engn Mat, Minist Educ, Shanghai 201804, Peoples R China
[2] Xinjiang Univ, Coll Civil Engn & Architecture, Urumqi 830017, Peoples R China
[3] Urban Construct Investment Grp Co Ltd, Guizhou, Qianxinan, Peoples R China
来源
关键词
Strength; Autogenous shrinkage; Alkali-activated slag-fly ash; Microstructure; Porosity; BLAST-FURNACE SLAG; FLY-ASH; DRYING SHRINKAGE; GEOPOLYMER; STRENGTH; CONCRETE; DURABILITY; MORTAR; PASTES; DOSAGE;
D O I
10.1016/j.jobe.2023.106712
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The alkali-activated slag/fly ash system is used as a cementitious material to instead of ordinary Portland cement and has good application prospects for recycling various solid wastes and low carbonization in the construction field. In this work, we aim to reveal the effects of changes in precursor composition and sodium silicate modulus in alkali-activated slag/fly ash slurry on strength and autogenous shrinkage, and make a comparative study about workability, autogenous shrinkage and microstructure. The test results showed that the engineering performance of alkali-activated cementitious materials mainly depended on the constituent materials and their ratios. With the increase of fly ash content, the slump was enhanced, the setting time was extended, the strength was slightly reduced, and the autogenous shrinkage was significantly mitigated. For the reference slurry (n = 1.2), the 28 d autogenous shrinkage value of S10F0 was 6064.28 & mu;m/m, the 28 d autogenous shrinkage value of S9F1 was 1516.67 & mu;m/m, and the shrinkage value was reduced by 75%. And with the increase of sodium silicate modulus, the slump was enhanced, the setting time was increased, the early strength was reduced, the later strength developed faster, and the influence on the sample autogenous shrinkage was smaller. The reaction products were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). With the increase of fly ash content, the calcite phase was observed in the reacted products, the flocculent components and many unreacted fly ash spheres in diameter were observed, and there were many micro-pores in the hardened solid particles. Combined with autogenous shrinkage and mercury intrusion porosimetry analysis, it could be discovered that when the modulus of sodium silicate increased, the capillary pore volume increased, and the total porosity and pore size decreased significantly, when the modulus of the activator increased from 1.2 to 2.0, the porosity decreased by 44.36%. making the autogenous shrinkage and strength increase. When the activator modulus was 1.2 and the content of fly ash was more than 30%, the content of NaOH in the solution was higher, which accelerated the early reaction rate, resulting in more pores inside the slurry, larger pore size, smaller capillary pore volume, and expansion of alkali-activated material slurry volume. This study may shed valuable insights to the improvement of autogenous shrinkage by adjusting precursor composition and sodium silicate modulus.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Effect of Fly Ash, MgO and Curing Solution on the Chemical Shrinkage of Alkali-Activated Slag Cement
    Fang, Yonghao
    Gu, Yamin
    Kang, Qiuboa
    ADVANCES IN BUILDING MATERIALS, PTS 1-3, 2011, 168-170 : 2008 - 2012
  • [32] Development of autogenous shrinkage prediction model of alkali-activated slag-fly ash geopolymer based on machine learning
    Shen, Jiale
    Li, Yue
    Lin, Hui
    Li, Yaqiang
    JOURNAL OF BUILDING ENGINEERING, 2023, 71
  • [33] Pore solution composition of alkali-activated slag/fly ash pastes
    Zuo, Yibing
    Nedeljkovic, Marija
    Ye, Guang
    CEMENT AND CONCRETE RESEARCH, 2019, 115 : 230 - 250
  • [34] Role of Curing Conditions and Precursor on the Microstructure and Phase Chemistry of Alkali-Activated Fly Ash and Slag Pastes
    Nedeljkovic, Marija
    Ghiassi, Bahman
    Ye, Guang
    MATERIALS, 2021, 14 (08)
  • [35] Effect of of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars
    Shi, Zhenguo
    Shi, Caijun
    Wan, Shu
    Li, Ning
    Zhang, Zuhua
    CEMENT AND CONCRETE RESEARCH, 2018, 113 : 55 - 64
  • [36] Autogenous shrinkage of slag-fly ash blends activated with hybrid sodium silicate and sodium sulfate at different curing temperatures
    Uppalapati, Siva
    Vandewalle, Lucie
    Cizer, Ozlem
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 265
  • [37] Effect of basalt fiber on fracture properties and drying shrinkage of alkali-activated slag with different silicate modulus
    Si, Ruizhe
    Zhan, Yulin
    Zang, Yamei
    Sun, Yuehan
    Huang, Yuanyuan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 25 : 552 - 569
  • [38] Fresh and hardened properties of alkali-activated slag concrete: The effect of fly ash as a supplementary precursor
    Sun, Yubo
    Liu, Zhiyuan
    Ghorbani, Saeid
    Ye, Guang
    De Schutter, Geert
    JOURNAL OF CLEANER PRODUCTION, 2022, 370
  • [39] AN OVERVIEW ON AUTOGENOUS AND DRYING SHRINKAGE OF ALKALI-ACTIVATED SLAG CEMENT
    Shi, Caijun
    Hu, Xiang
    Chong, Linlin
    Lv, Kuixi
    ADVANCES IN CHEMICALLY-ACTIVATED MATERIALS (CAM'2014), 2014, 92 : 60 - 74
  • [40] Shrinkage mitigation of alkali-activated fly ash/slag mortar by using phosphogypsum waste
    Zheng, Yong
    Xuan, Dongxing
    Shen, Bo
    Ma, Kejian
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 375