Graphene-Integrated Negative Quantum Capacitance Field-Effect Transistor With Sub-60-mV/dec Switching

被引:3
|
作者
Zhu, Hao [1 ]
Yang, Yafen [1 ]
Zhu, Xinyi [1 ]
Raju, Parameswari [2 ,3 ]
Ioannou, Dimitris E. [2 ,3 ]
Li, Qiliang [2 ,3 ]
机构
[1] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
[2] NIST, Engn Phys Div, Gaithersburg, MD 20878 USA
[3] George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA 22030 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
2-D metallic system; grapheme; negative quantum capacitance; subthreshold slope (SS); 2-DIMENSIONAL ELECTRON; TOPOLOGICAL-INSULATOR; DIRAC CONE; COMPRESSIBILITY; MOS2;
D O I
10.1109/TED.2023.3294365
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aggressive scaling of metal-oxide- semiconductor field-effect transistor (MOSFET) has urged advanced device technology overcoming the 60-mV/dec limit of subthreshold slope (SS) at room temperature. The introduction of a negative component in the FET gate capacitance has been proven effective to realize steep-slope switching. Here, we report a sub-60-mV/dec MoS2 negative quantum capacitance FET (NQCFET) with single-layer (SL) graphene integrated in the gate-stack. The negative quantum capacitance from the low density of states (DOS) is strongly associated with the electron system of the 2-D SL graphene. With this negative contribution to the gate capacitance, subthermionic switching is achieved in the NQCFET with a minimum SS of 31 mV/dec. This prototype device illustrates a feasible approach to realize negative quantum capacitance in an FET architecture and opens attractive pathways for future steep-slope and low-power electronic device applications.
引用
收藏
页码:4899 / 4904
页数:6
相关论文
共 50 条
  • [21] Graphene field-effect transistor application-electric band structure of graphene in transistor structure extracted from quantum capacitance
    Nagashio, Kosuke
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (01) : 64 - 72
  • [22] Quantum Capacitance of a Dual-Gate Field-Effect Transistor
    Fedorov, I. B.
    Dorozhkin, S. I.
    Kapustin, A. A.
    JOURNAL OF SURFACE INVESTIGATION, 2021, 15 (06): : 1168 - 1173
  • [23] Quantum capacitance measurement for a black phosphorus field-effect transistor
    Kang, Jiahao
    NANOTECHNOLOGY, 2016, 27 (04)
  • [24] Graphene field-effect transistor application-electric band structure of graphene in transistor structure extracted from quantum capacitance
    Kosuke Nagashio
    Journal of Materials Research, 2017, 32 : 64 - 72
  • [25] Quantum Capacitance of a Dual-Gate Field-Effect Transistor
    I. B. Fedorov
    S. I. Dorozhkin
    A. A. Kapustin
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, 15 : 1168 - 1173
  • [26] Mobility Extraction and Quantum Capacitance Impact in High Performance Graphene Field-effect Transistor Devices
    Chen, Zhihong
    Appenzeller, Joerg
    IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2008, TECHNICAL DIGEST, 2008, : 509 - +
  • [27] Negative Capacitance for Stabilizing the Logic State in a Tunnel Field-Effect Transistor
    Dey, Koushik
    Das, Bikash
    Hazra, Pabitra Kumar
    Kundu, Tanima
    Naskar, Sanjib
    Das, Soumik
    Maity, Sujan
    Maji, Poulomi
    Karmakar, Bipul
    Paramanik, Rahul
    Datta, Subhadeep
    ACS APPLIED NANO MATERIALS, 2024, 7 (23) : 26405 - 26413
  • [28] Analysis and Modeling of Current Mismatch in Negative Capacitance Field-Effect Transistor
    Goel, Ravi
    Sharma, Ayushi
    Chahuan, Yogesh Singh
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (09) : 5337 - 5344
  • [29] Impact of body-biasing for negative capacitance field-effect transistor
    Kim, Hyun Woo
    Kwon, Daewoong
    JOURNAL OF PHYSICS COMMUNICATIONS, 2020, 4 (09): : 1 - 7
  • [30] The Effect of Ferroelectric Dynamic Behavior on Negative Capacitance Field-Effect Transistor Inverter
    Lee, Dongkeun
    Go, Seungwon
    Park, Jae Yeon
    Kim, Sinhee
    Noh, Hyung Ju
    Park, So Ra
    Kim, Sangwan
    2022 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2022,