Two-dimensional porous ?-Co(OH)2 and Co3O4 hexagonal nanoplates as stable and high-performance anode for lithium-ion batteries br

被引:15
|
作者
Narsimulu, D. [1 ]
Shanthappa, R. [1 ]
Kakarla, Ashok Kumar [1 ]
Krishna, B. N. Vamsi [1 ]
Bandi, Hari [1 ]
Yu, Jae Su [1 ]
机构
[1] Kyung Hee Univ, Inst Wearable Convergence Elect, Dept Elect & Informat Convergence Engn, 1732 Deogyeong-Daero, Yongin 17104, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
Silicone oil-bath synthesis; Anode; Lithium-ion battery; RATE CAPABILITY; ENERGY-STORAGE; ARRAY; SUPERCAPACITORS; NANOSTRUCTURES; NANOFIBERS; NANOSHEETS; COMPOSITE; MNO2;
D O I
10.1016/j.jallcom.2022.167618
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The multifunctional beta-Co(OH)2 and Co3O4 nanoplates were successfully synthesized using a silicone oil-bath method, which manifests hexagonal-like structures with the existence of interior pores. The two-dimen-sional (2D) porous beta-Co(OH)2 and Co3O4 hexagonal nanoplates (HNPs) were obtained at the reaction temperatures of 80 degrees C (beta-Co(OH)2@80) and 100 degrees C (Co3O4@10 0), further calcined at 450 degrees C. The specific surface areas of 59.6 and 101.8 m2 g-1 were obtained for the beta-Co(OH)2 and Co3O4@10 0 HNPs samples, respectively. Both the samples were utilized as anodes for lithium (Li)-ion batteries. The 2D porous Co3O4@ 100 HNPs electrode delivered an excellent discharge capacity of 1141 mA h g-1 at 100 mA g-1, whereas 506 mA h g-1 remained for the beta-Co(OH)2@80 HNPs electrode. Additionally, the Co3O4@10 0 HNPs electrode was sustained over 1000 cycles with a discharge capacity of 566 mA h g-1. Furthermore, the Co3O4@10 0 HNPs electrode showed good rate performance with a discharge capacity of 458 mA h g-1 even at 800 mA g-1. The obtained excellent electrochemical characteristics of Co3O4 electrodes are ascribed to the unique 2D structure with small-sized interior pores, which facilitates Li+ diffusion and enhances structural robustness. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Construction of hollow Co3O4 cubes as a high-performance anode for lithium ion batteries
    Li, Li
    Zhang, Zichao
    Ren, Sijia
    Zhang, Bingke
    Yang, Shuhua
    Cao, Bingqiang
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (16) : 7960 - 7965
  • [22] Preparation of Co3O4/NF Anode for Lithium-ion Batteries
    Tian, Shiyi
    Li, Botao
    Zhang, Bochao
    Wang, Yang
    Yang, Xu
    Ye, Han
    Xia, Zhijie
    Zheng, Guoxu
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2020, 11 (04) : 384 - 391
  • [23] Electrochemical Performance of Co3O4 Nanofibers As Anode Material for Lithium-Ion Batteries
    Dai, Jianfeng
    Zhu, Xiaojun
    Liu, Jifei
    Wang, Qing
    Li, Weixue
    Qi, Yufeng
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 93 (10) : 2067 - 2071
  • [24] Electrochemical Performance of Co3O4 Nanofibers As Anode Material for Lithium-Ion Batteries
    Xiaojun Jianfeng Dai
    Jifei Zhu
    Qing Liu
    Weixue Wang
    Yufeng Li
    Russian Journal of Physical Chemistry A, 2019, 93 : 2067 - 2071
  • [25] Porous Co3O4 column as a high-performance Lithium anode material
    Sun, Junli
    Wang, Huaibin
    Li, Yang
    Zhao, Min
    JOURNAL OF POROUS MATERIALS, 2021, 28 (03) : 889 - 894
  • [26] Porous Co3O4 column as a high-performance Lithium anode material
    Junli Sun
    Huaibin Wang
    Yang Li
    Min Zhao
    Journal of Porous Materials, 2021, 28 : 889 - 894
  • [27] Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries
    Zhai, Ximei
    Xu, Xiangming
    Zhu, Xiaoliang
    Zhao, Yongjie
    Li, Jingbo
    Jin, Haibo
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (02) : 1356 - 1364
  • [28] Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries
    Ximei Zhai
    Xiangming Xu
    Xiaoliang Zhu
    Yongjie Zhao
    Jingbo Li
    Haibo Jin
    Journal of Materials Science, 2018, 53 : 1356 - 1364
  • [29] A Co3O4/C Composite for use as a High-Performance Lithium-Ion Battery Anode
    Yang, Zhixiong
    Pan, Guangxing
    Hu, Yuanyuan
    Wu, Wanbao
    Cao, Miaomiao
    Zhang, Xueting
    Zhang, Ling
    Zhu, Zhenye
    Zhang, Jiaheng
    CHEMISTRYSELECT, 2020, 5 (46): : 14613 - 14619
  • [30] Porous SnO2/Co3O4 nanocubes anchored onto reduced graphene oxide as a high-performance anode for lithium-ion batteries
    Chen, Liming
    Tang, Bin
    Li, Haoyue
    Wang, Bohan
    Huang, Bin
    SOLID STATE IONICS, 2023, 396