Investigation of Compressor Cascade Flow Using Physics-Informed Neural Networks with Adaptive Learning Strategy

被引:3
|
作者
Li, Zhihui [1 ]
Montomoli, Francesco [1 ]
Sharma, Sanjiv [1 ]
机构
[1] Imperial Coll London, Fac Engn, Dept Aeronaut, Uncertainty Quantificat Lab, London SW7 2AZ, England
关键词
Computational Fluid Dynamics; Inverse Problems; Turbomachinery Design; Fluid Mechanics; Deep Learning; Physics Informed Neural Networks; Adaptive Learning; Aerodynamics; Forward Problems; Aleatory Uncertainty; SIMULATION;
D O I
10.2514/1.J063562
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this study, we utilize the emerging physics-informed neural networks (PINNs) approach for the first time to predict the flowfield of a compressor cascade. Different from conventional training methods, a new adaptive learning strategy that mitigates gradient imbalance through incorporating adaptive weights in conjunction with a dynamically adjusting learning rate is used during the training process to improve the convergence of PINNs. The performance of PINNs is assessed here by solving both the forward and inverse problems. In the forward problem, by encapsulating the physical relations among relevant variables, PINNs demonstrate their effectiveness in accurately forecasting the compressor's flowfield. PINNs also show obvious advantages over the traditional computational fluid dynamics (CFD) approaches, particularly in scenarios lacking complete boundary conditions, as is often the case in inverse engineering problems. PINNs successfully reconstruct the flowfield of the compressor cascade solely based on partial velocity vectors and near-wall pressure information. Furthermore, PINNs show robust performance in the environment of various levels of aleatory uncertainties stemming from labeled data. This research provides evidence that PINNs can offer turbomachinery designers an additional and promising option alongside the current dominant CFD methods.
引用
收藏
页码:1400 / 1410
页数:11
相关论文
共 50 条
  • [1] Learning Free-Surface Flow with Physics-Informed Neural Networks
    Leiteritz, Raphael
    Hurler, Marcel
    Pflueger, Dirk
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1668 - 1673
  • [2] Self-adaptive physics-informed neural networks
    McClenny, Levi D.
    Braga-Neto, Ulisses M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [3] Self-Adaptive Physics-Informed Neural Networks
    Texas A&M University, United States
    1600,
  • [4] Adaptive task decomposition physics-informed neural networks
    Yang, Jianchuan
    Liu, Xuanqi
    Diao, Yu
    Chen, Xi
    Hu, Haikuo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [5] Physics-informed neural networks based cascade loss model
    Feng Y.
    Song X.
    Yuan W.
    Lu H.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (07): : 845 - 855
  • [6] Solving groundwater flow equation using physics-informed neural networks
    Cuomo, Salvatore
    De Rosa, Mariapia
    Giampaolo, Fabio
    Izzo, Stefano
    Di Cola, Vincenzo Schiano
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 145 : 106 - 123
  • [7] Investigation of Physics-Informed Neural Networks to Reconstruct a Flow Field with High Resolution
    Yang, Zhou
    Xu, Yuwang
    Jing, Jionglin
    Fu, Xuepeng
    Wang, Bofu
    Ren, Haojie
    Zhang, Mengmeng
    Sun, Tongxiao
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (11)
  • [8] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [9] iPINNs: incremental learning for Physics-informed neural networks
    Dekhovich, Aleksandr
    Sluiter, Marcel H. F.
    Tax, David M. J.
    Bessa, Miguel A.
    ENGINEERING WITH COMPUTERS, 2025, 41 (01) : 389 - 402
  • [10] Learning in sinusoidal spaces with physics-informed neural networks
    Wong J.C.
    Ooi C.C.
    Gupta A.
    Ong Y.S.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 985 - 1000