A Bayesian fine-mapping model using a continuous global-local shrinkage prior with applications in prostate cancer analysis

被引:1
|
作者
Li, Xiang [1 ]
Sham, Pak Chung [2 ]
Zhang, Yan Dora [3 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Peoples R China
[2] Univ Hong Kong, Li Ka Shing Fac Med, Dept Psychiat, Hong Kong, Peoples R China
[3] Univ Hong Kong, Li Ka Shing Fac Med, Ctr Panor Sci, Hong Kong, Peoples R China
关键词
VARIABLE SELECTION; CAUSAL VARIANTS; ASSOCIATION; REGRESSION; STATISTICS; ESTIMATOR; TOOL;
D O I
10.1016/j.ajhg.2023.12.007
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The aim of fine mapping is to identify genetic variants causally contributing to complex traits or diseases. Existing fine -mapping methods employ Bayesian discrete mixture priors and depend on a pre -specified maximum number of causal variants, which may lead to suboptimal solutions. In this work, we propose a Bayesian fine -mapping method called h2 -D2, utilizing a continuous global -local shrinkage prior. We also present an approach to define credible sets of causal variants in continuous prior settings. Simulation studies demonstrate that h2 -D2 outperforms current state-of-the-art fine -mapping methods such as SuSiE and FINEMAP in accurately identifying causal variants and estimating their effect sizes. We further applied h2 -D2 to prostate cancer analysis and discovered some previously unknown causal variants. In addition, we inferred 369 target genes associated with the detected causal variants and several pathways that were significantly over -represented by these genes, shedding light on their potential roles in prostate cancer development and progression.
引用
收藏
页码:213 / 226
页数:15
相关论文
共 15 条
  • [1] Default Bayesian analysis with global-local shrinkage priors
    Bhadra, Anindya
    Datta, Jyotishka
    Polson, Nicholas G.
    Willard, Brandon
    [J]. BIOMETRIKA, 2016, 103 (04) : 955 - 969
  • [2] Bayesian global-local shrinkage methods for regularisation in the high dimension linear model
    Griffin, Jim E.
    Brown, Philip J.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 210
  • [3] Genomic Prediction Using Bayesian Regression Models With Global-Local Prior
    Shi, Shaolei
    Li, Xiujin
    Fang, Lingzhao
    Liu, Aoxing
    Su, Guosheng
    Zhang, Yi
    Luobu, Basang
    Ding, Xiangdong
    Zhang, Shengli
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [4] Bayesian variable selection and estimation in binary quantile regression using global-local shrinkage priors
    Ma, Zhuanzhuan
    Han, Zifei
    Wang, Min
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [5] Bayesian variable selection using partially observed categorical prior information in fine-mapping association studies
    Alenazi, Abdulaziz A.
    Cox, Angela
    Juarez, Miguel
    Lin, Wei-Yu
    Walters, Kevin
    [J]. GENETIC EPIDEMIOLOGY, 2019, 43 (06) : 690 - 703
  • [6] Bayesian Analysis (2022) 17, 2, pp. On Global-Local Shrinkage Priors for Count Data
    Hamura, Yasuyuki
    Irie, Kaoru
    Sugasawa, Shonosuke
    [J]. BAYESIAN ANALYSIS, 2022, 17 (02): : 545 - 564
  • [7] LEVEL SET TRACKING USING SHAPE PRIOR AND GLOBAL-LOCAL COLOR MODEL
    Heo, Seon
    Cho, Nam Ik
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2015, : 469 - 472
  • [8] Fine-mapping from summary data using a non-local prior improves detection of multiple causal variants
    Karhunen, Ville
    Launonen, Ilkka
    Jarvelin, Marjo-Riitta
    Sebert, Sylvain
    Sillanpaa, Mikko J.
    [J]. HUMAN HEREDITY, 2023, 88 (SUPPL 1) : 5 - 5
  • [9] Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants
    Dadaev, Tokhir
    Saunders, Edward J.
    Newcombe, Paul J.
    Anokian, Ezequiel
    Leongamornlert, Daniel A.
    Brook, Mark N.
    Cieza-Borrella, Clara
    Mijuskovic, Martina
    Wakerell, Sarah
    Al Olama, Ali Amin
    Schumacher, Fredrick R.
    Berndt, Sonja I.
    Benlloch, Sara
    Ahmed, Mahbubl
    Goh, Chee
    Sheng, Xin
    Zhang, Zhuo
    Muir, Kenneth
    Govindasami, Koveela
    Lophatananon, Artitaya
    Stevens, Victoria L.
    Gapstur, Susan M.
    Carter, Brian D.
    Tangen, Catherine M.
    Goodman, Phyllis
    Thompson, Ian M., Jr.
    Batra, Jyotsna
    Chambers, Suzanne
    Moya, Leire
    Clements, Judith
    Horvath, Lisa
    Tilley, Wayne
    Risbridger, Gail
    Gronberg, Henrik
    Aly, Markus
    Nordstrom, Tobias
    Pharoah, Paul
    Pashayan, Nora
    Schleutker, Johanna
    Tammela, Teuvo L. J.
    Sipeky, Csilla
    Auvinen, Anssi
    Albanes, Demetrius
    Weinstein, Stephanie
    Wolk, Alicja
    Hakansson, Niclas
    West, Catharine
    Dunning, Alison M.
    Burnet, Neil
    Mucci, Lorelei
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [10] Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants
    Tokhir Dadaev
    Edward J. Saunders
    Paul J. Newcombe
    Ezequiel Anokian
    Daniel A. Leongamornlert
    Mark N. Brook
    Clara Cieza-Borrella
    Martina Mijuskovic
    Sarah Wakerell
    Ali Amin Al Olama
    Fredrick R. Schumacher
    Sonja I. Berndt
    Sara Benlloch
    Mahbubl Ahmed
    Chee Goh
    Xin Sheng
    Zhuo Zhang
    Kenneth Muir
    Koveela Govindasami
    Artitaya Lophatananon
    Victoria L. Stevens
    Susan M. Gapstur
    Brian D. Carter
    Catherine M. Tangen
    Phyllis Goodman
    Ian M. Thompson
    Jyotsna Batra
    Suzanne Chambers
    Leire Moya
    Judith Clements
    Lisa Horvath
    Wayne Tilley
    Gail Risbridger
    Henrik Gronberg
    Markus Aly
    Tobias Nordström
    Paul Pharoah
    Nora Pashayan
    Johanna Schleutker
    Teuvo L. J. Tammela
    Csilla Sipeky
    Anssi Auvinen
    Demetrius Albanes
    Stephanie Weinstein
    Alicja Wolk
    Niclas Hakansson
    Catharine West
    Alison M. Dunning
    Neil Burnet
    Lorelei Mucci
    [J]. Nature Communications, 9