Ensembled Deep Convolutional Generative Adversarial Network for Grading Imbalanced Diabetic Retinopathy Recognition

被引:3
|
作者
Naz, Huma [1 ]
Nijhawan, Rahul [2 ]
Ahuja, Neelu Jyothi [1 ]
Al-Otaibi, Shaha [3 ]
Saba, Tanzila [4 ]
Bahaj, Saeed Ali [5 ]
Rehman, Amjad [4 ]
机构
[1] Univ Petr & Energy Studies Dehradun, Sch Comp Sci, Dehra Dun 248007, Uttarakhand, India
[2] Thapar Inst Engn & Technol, Patiala 147004, Punjab, India
[3] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11671, Saudi Arabia
[4] Prince Sultan Univ, Artificial Intelligence & Data Analyt Lab, Riyadh 11586, Saudi Arabia
[5] Prince Sattam Bin Abdulaziz Univ, Coll Business Adm, MIS Dept, Al Kharj 11942, Saudi Arabia
关键词
Diabetic retinopathy detection; imbalance data; ensembled GAN; healthcare; health risks; CLASSIFICATION; SEVERITY;
D O I
10.1109/ACCESS.2023.3327900
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic Retinopathy (DR) is one of the leading causes of blindness and vision loss worldwide. According to the International Diabetes Federation (IDF), approximately one-third of individuals with diabetes, equivalent to 32.2%, are affected by some form of DR. Due to the uneven data distribution, intra-class variance, and a dearth of ophthalmologists, DR diagnosis is considered challenging. In recent years, Convolutional Neural Networks (CNN) and supervised learning techniques have been potentially useful in computer vision applications. However, unsupervised CNN has received less attention. Moreover, it is more manageable to use synthetic images for model training with the recent advancements in graphics. Therefore, the proposed method combines the actual and augmented views using the Deep Convolutional Generative Adversarial Network (DCGAN) algorithm. The generated views are implemented to balance the minority class in the imbalanced dataset. Furthermore, a novel ensemble convolutional neural network algorithm named Different View Ensemble (DVE) that merges the weighted average prediction of CNN, CNN-i, and CNN+i algorithms has been proposed. The proposed algorithm is evaluated on the DDR and EyePACS datasets, and its performance is compared with K-Means, Fuzzy C-Means (FCM), and Autoencoder-based Deep Embedded Clustering Techniques (DEC). The results demonstrate the superiority of the proposed algorithm, achieving an accuracy rate of 97.4%, specificity of 99.6%, and sensitivity of 92.3%. The promising results underscore the potential impact of this methodology in enhancing the accuracy and reliability of automated diagnostic systems in the field of ophthalmology. Notably, the evaluation considers imbalanced data and a DCGAN-balanced dataset, where the proposed approach exhibits even better performance with balanced classes.
引用
收藏
页码:120554 / 120568
页数:15
相关论文
共 50 条
  • [21] Comparative Analysis of Deep Convolutional Generative Adversarial Network and Conditional Generative Adversarial Network using Hand Written Digits
    Prabhat
    Nishant
    Vishwakarma, Dinesh Kumar
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1072 - 1075
  • [22] Modulation recognition method based on generative adversarial and convolutional neural network
    Shao K.
    Zhu M.
    Wang G.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2022, 44 (03): : 1036 - 1043
  • [23] LW-DCGAN: a lightweight deep convolutional generative adversarial network for enhancing occluded face recognition
    Lv, Yingying
    Wang, Jianping
    Gao, Guohong
    Li, Qian
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (05)
  • [24] Deep Convolutional Generative Adversarial Network-Based Food Recognition Using Partially Labeled Data
    Mandal, Bappaditya
    Puhan, Niladri B.
    Verma, Avijit
    IEEE SENSORS LETTERS, 2019, 3 (02)
  • [25] Composite Fault Diagnosis Based on Deep Convolutional Generative Adversarial Network
    Zhang Yonghong
    Zhang Zhongyang
    Shao Fan
    Wang Yifei
    Zhao Xiaoping
    Lv Kaiyang
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [26] The development of deep convolutional generative adversarial network to synthesize odontocetes' clicks
    Xiang, Wenjie
    Song, Zhongchang
    Peng, Xuming
    Wei, Yutong
    Fu, Weijie
    Su, Yingnan
    Yang, Wuyi
    Zhao, Baode
    Liu, Songzuo
    Zhang, Yu
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2025, 157 (01): : 328 - 339
  • [27] Generation of Music With Dynamics Using Deep Convolutional Generative Adversarial Network
    Toh, Raymond Kwan How
    Sourin, Alexei
    2021 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW 2021), 2021, : 137 - 140
  • [28] Traffic identification model based on generative adversarial deep convolutional network
    Shi Dong
    Yuanjun Xia
    Tao Peng
    Annals of Telecommunications, 2022, 77 : 573 - 587
  • [29] Traffic identification model based on generative adversarial deep convolutional network
    Dong, Shi
    Xia, Yuanjun
    Peng, Tao
    ANNALS OF TELECOMMUNICATIONS, 2022, 77 (9-10) : 573 - 587
  • [30] Face Generation using Deep Convolutional Generative Adversarial Neural Network
    Devaki, P.
    Kumar, Prasanna C. B.
    Kaviraj, S.
    Ramprasath, A.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 20 - 23