Efficient daily electricity demand prediction with hybrid deep-learning multi-algorithm approach

被引:18
|
作者
Ghimire, Sujan [1 ]
Deo, Ravinesh C. [1 ]
Casillas-Perez, David [2 ]
Salcedo-Sanz, Sancho [1 ,3 ]
机构
[1] Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Qld 4300, Australia
[2] Univ Rey Juan Carlos, Dept Signal Proc & Commun, Fuenlabrada 28942, Madrid, Spain
[3] Univ Alcala, Dept Signal Proc & Commun, Alcala De Henares 28805, Madrid, Spain
关键词
Electricity demand prediction; Sustainable energy; Artificial intelligence; Deep learning; Encode-decoder architectures; Kernel density estimation; EMPIRICAL MODE DECOMPOSITION; NEURAL-NETWORK; FEATURE-SELECTION; ADAPTIVE NOISE; ERROR; CONSUMPTION; FRAMEWORK; SPECTRUM;
D O I
10.1016/j.enconman.2023.117707
中图分类号
O414.1 [热力学];
学科分类号
摘要
Predicting electricity demand (G) is crucial for electricity grid operation and management. In order to make reliable predictions, model inputs must be analyzed for predictive features before they can be incorporated into a forecast model. In this study, a hybrid multi-algorithm framework is developed by incorporating Artificial Neural Networks (ANN), Encoder-Decoder Based Long Short-Term Memory (EDLSTM) and Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICMD). Following the partitioning of data, the G time-series are decomposed into multiple time-series using the ICEEMDAN algorithm, with partial autocorrelation applied to training sets to determine lagged features. We combine lagged inputs into a predictive framework where G components with the highest frequency are predicted with an ANN model, while remaining components are predicted with an EDLSTM model. To generate the results, all IMF components' predictions are merged using ICMD-ANN-EDLSTM hybrid models. A comparison is made between this objective model and standalone models (ANN, RFR, LSTM), hybrid models (CLSTM), and three decomposition-based hybrid models. Based on the results, the Relative Mean Absolute Error at Duffield Road substation was approximate to 2.82%, approximate to 4.15%, approximate to 3.17%, approximate to 6.41%, approximate to 6.60%, approximate to 6.49%, and approximate to 6.602%, compared to ICMD-RFR-LSTM, ICMD-RFR-CLSTM, LSTM, CLSTM, RFR, and ANN. According to statistical score metrics, the hybrid ICMD-ANN-EDLSTM model performed better than other benchmark models. Further, the results show that the hybrid ICMD-ANN-EDLSTM model can not only detect seasonality in G data, but also predict and analyze electricity market demand to add valuable insight to market analysis.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] RSAB-ConvGRU: A hybrid deep-learning method for traffic flow prediction
    Dawen Xia
    Yan Chen
    Wenyong Zhang
    Yang Hu
    Yantao Li
    Huaqing Li
    Multimedia Tools and Applications, 2024, 83 : 20559 - 20585
  • [32] Hybrid deep-learning architecture for general disruption prediction across multiple tokamaks
    Zhu, J. X.
    Rea, C.
    Montes, K.
    Granetz, R. S.
    Sweeney, R.
    Tinguely, R. A.
    NUCLEAR FUSION, 2021, 61 (02)
  • [33] Prediction of the Location of the Glottis in Laryngeal Images by Using a Novel Deep-Learning Algorithm
    Kim, Jong Soo
    Cho, Yongil
    Lim, Tae Ho
    IEEE ACCESS, 2019, 7 (79545-79554) : 79545 - 79554
  • [34] Hybrid Deep-Learning Model for Deepfake Detection in Video using Transfer Learning Approach
    Pandey, Raksha
    Kushwaha, Alok Kumar Singh
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2024,
  • [35] Innovative Deep Learning Strategies for Chaotic Data Classification: A Multi-Algorithm Comparison in the Presence of Noise
    Lin, Shih-Lin
    FLUCTUATION AND NOISE LETTERS, 2024, 23 (03):
  • [36] A deep-learning framework for multi-level peptide–protein interaction prediction
    Yipin Lei
    Shuya Li
    Ziyi Liu
    Fangping Wan
    Tingzhong Tian
    Shao Li
    Dan Zhao
    Jianyang Zeng
    Nature Communications, 12
  • [37] Probabilistic Forecasting for Demand of a Bike-Sharing Service Using a Deep-Learning Approach
    Lim, Heejong
    Chung, Kwanghun
    Lee, Sangbok
    SUSTAINABILITY, 2022, 14 (23)
  • [38] Hybrid Approach to Crime Prediction using Deep learning
    Azeez, Jazeem
    Aravindhar, John
    2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2015, : 1701 - 1710
  • [39] Hybrid Deep Learning Approach for Traffic Speed Prediction
    Dai, Fei
    Cao, Pengfei
    Huang, Penggui
    Mo, Qi
    Huang, Bi
    BIG DATA, 2024, 12 (05) : 377 - 389
  • [40] A Deep Learning Approach to Forecasting Monthly Demand for Residential-Sector Electricity
    Son, Hyojoo
    Kim, Changwan
    SUSTAINABILITY, 2020, 12 (08)