Kinetic study of glycerol hydrodeoxygenation on Al2O3 and NiMo2C/Al2O3 catalysts

被引:1
|
作者
Duarte, Rafael Belo [1 ,3 ]
Corazza, Marcos Lucio [2 ]
Pimenta, Joao Lourenco Castagnari Willimann [1 ]
Jorge, Luiz Mario de Matos [1 ]
机构
[1] Univ Estadual Maringa, Dept Chem Engn, Ave Colombo, 5790, BR-87020900 Maringa, PR, Brazil
[2] Univ Fed Parana, Dept Chem Engn, R Francisco H dos Santos, BR-81531990 Curitiba, PR, Brazil
[3] Univ Estadual Maringa, Dept Chem Engn, UEM, Ave Colombo, 5790-Zona 7, BR-87020900 Maringa, PR, Brazil
关键词
Glycerol; Hydrodeoxygenation; Alumina; Nickel; Molybdenum; Kinetic model; PHASE HYDROGENOLYSIS; SUPPORTED COPPER; 1,2-PROPANEDIOL; 1,3-PROPANEDIOL; PROPYLENE; NICKEL; CARBON; OXIDE; RE;
D O I
10.1016/j.fuel.2023.129257
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A kinetic study of glycerol hydrodeoxygenation (HDO) on NiMo2C/Al2O3 and Al2O3, prepared by sol-gel technique, was carried out in a batch reactor, from 250 degrees C to 285 degrees C, at high glycerol concentration (95wt%). Structural and surface properties of the catalysts were determined by XRD, nitrogen physisorption, TEM and NH3-TPD. Impregnation of alumina with Ni and Mo and subsequent carburization at 730 degrees C increased crystallite sizes and reduced total acidity of the catalyst to 1/3 that of pure alumina. All reactions were well fitted to a zeroth order model. Estimation of reagents mass transport rates suggests no diffusion limitation. Main products were propanediols, ethylene glycol and long-chain molecules from oligomerization reactions, as well as methane, ethane and propane. At this temperature range, long-chain compounds have the highest yields, mainly on alumina.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] COMPARISON OF SULFIDED COMO/AL2O3 AND NIMO/AL2O3 CATALYSTS IN DEEP HYDRODESULFURIZATION OF GAS OIL FRACTIONS
    MA, X
    SAKANISHI, K
    ISODA, T
    MOCHIDA, I
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 208 : 83 - PETR
  • [22] CoMo/Al2O3 versus NiMo/Al2O3 sulphide catalysts: sensitivity to reaction conditions for HDS and hydrogenation
    Van, Gestel, J.
    Finot, L.
    Leglise, J.
    Duchet, J. C.
    Bulletin des Societes Chimiques Belges, 1995, 104 (4-5):
  • [23] Composition and Properties of Rapeseed Oil Hydrotreating Products over CoMo/Al2O3 and NiMo/Al2O3 Catalysts
    Vachova, Veronika
    Toullis, Dania
    Straka, Petr
    Simacek, Pavel
    Stas, Martin
    Gdovin, Andrej
    Beno, Zdenek
    Blazek, Josef
    ENERGY & FUELS, 2020, 34 (08) : 9609 - 9619
  • [24] COMO/AL2O3 VERSUS NIMO/AL2O3 SULFIDE CATALYSTS - SENSITIVITY TO REACTION CONDITIONS FOR HDS AND HYDROGENATION
    VANGESTEL, J
    FINOT, L
    LEGLISE, J
    DUCHET, JC
    BULLETIN DES SOCIETES CHIMIQUES BELGES, 1995, 104 (4-5): : 189 - 195
  • [25] EELS investigation of CVD α-Al2O3, κ-Al2O3 and γ-Al2O3 coatings
    Larsson, A
    Zackrisson, J
    Halvarsson, M
    Ruppi, S
    MICROBEAM ANALYSIS 2000, PROCEEDINGS, 2000, (165): : 235 - 236
  • [26] Interaction of NiO with γ-Al2O3 supporter of NiO/γ-Al2O3 catalysts
    Zhang, YH
    Xiong, GX
    Sheng, SS
    Liu, SL
    Yang, WS
    ACTA PHYSICO-CHIMICA SINICA, 1999, 15 (08) : 735 - 741
  • [27] Phenol Hydrodeoxygenation over a Reduced and Sulfided NiMo/γ-Al2O3 Catalyst
    Templis, Chrysovalantis C.
    Revelas, Constantinos J.
    Papastylianou, Anestis A.
    Papayannakos, Nikos G.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (16) : 6278 - 6287
  • [28] A COMPARATIVE STUDY OF THE DOSIMETRIC FEATURES OF α-Al2O3:C,Mg AND α-Al2O3:C
    Kalita, J. M.
    Chithambo, M. L.
    RADIATION PROTECTION DOSIMETRY, 2017, 177 (03) : 261 - 271
  • [29] SULFURATION OF PT/AL2O3, PT-RE/AL2O3 AND PT-IR/AL2O3 CATALYSTS
    APESTEGUIA, C
    BARBIER, J
    REACTION KINETICS AND CATALYSIS LETTERS, 1982, 19 (3-4): : 351 - 354
  • [30] Inhibition effect of hydrogen sulfide and ammonia on NiMo/Al2O3, CoMo/Al2O3, NiCoMo/Al2O3 catalysts in hydrodesulfurization of dibenzothiophene and 4,6-dimethyidibenzothiophene
    Nakamura, H
    Amemiya, M
    Ishida, K
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2005, 48 (05) : 281 - 289