Bearing Fault Diagnosis Method Based on Deep Learning and Health State Division

被引:6
|
作者
Shi, Lin [1 ]
Su, Shaohui [1 ]
Wang, Wanqiang [1 ]
Gao, Shang [1 ]
Chu, Changyong [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Mech Engn, Hangzhou 310018, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 13期
基金
中国国家自然科学基金;
关键词
rolling bearing; fault diagnosis; health status division; deep learning; convolutional neural network;
D O I
10.3390/app13137424
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a key component of motion support, the rolling bearing is currently a popular research topic for accurate diagnosis of bearing faults and prediction of remaining bearing life. However, most existing methods still have difficulties in learning representative features from the raw data. In this paper, the Xi'an Jiaotong University (XJTU-SY) rolling bearing dataset is taken as the research object, and a deep learning technique is applied to carry out the bearing fault diagnosis research. The root mean square (RMS), kurtosis, and sum of frequency energy per unit acquisition period of the short-time Fourier transform are used as health factor indicators to divide the whole life cycle of bearings into two phases: the health phase and the fault phase. This division not only expands the bearing dataset but also improves the fault diagnosis efficiency. The Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN) network model is improved by introducing multi-scale large convolutional kernels and Gate Recurrent Unit (GRU) networks. The bearing signals with classified health states are trained and tested, and the training and testing process is visualized, then finally the experimental validation is performed for four failure locations in the dataset. The experimental results show that the proposed network model has excellent fault diagnosis and noise immunity, and can achieve the diagnosis of bearing faults under complex working conditions, with greater diagnostic accuracy and efficiency.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Bearing fault diagnosis based on the deep learning feature extraction and WOA SVM state recognition
    Zhao C.
    Hu H.
    Chen B.
    Zhang Y.
    Xiao J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (10): : 31 - 37and48
  • [22] Bearing Fault Diagnosis with Deep Learning Models
    Yi, Chia-An
    Wang, Yu-Ling
    Lai, Huei-Yang
    Chen, Yi-Wei
    Yang, Chan-Yun
    2020 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ROBOTICS (ICIPROB 2020, 2020,
  • [23] A Fault Diagnosis Method for Rolling Bearing Based on Deep Adversarial Transfer Learning With Transferability Measurement
    Mi, Junpeng
    Chu, Min
    Hou, Yaochun
    Jin, Jianxiang
    Huang, Wenjun
    Xiang, Tian
    Wu, Dazhuan
    IEEE SENSORS JOURNAL, 2024, 24 (01) : 984 - 994
  • [24] A rolling bearing fault diagnosis method based on deep attention transfer learning at different rotations
    Chen R.
    Tang L.
    Hu X.
    Yang L.
    Zhao L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (12): : 95 - 101and195
  • [25] Deep Clustering Bearing Fault Diagnosis Method Based on Local Manifold Learning of an Autoencoded Embedding
    An, Jing
    Ai, Ping
    Liu, Cong
    Xu, Sen
    Liu, Dakun
    IEEE ACCESS, 2021, 9 : 30154 - 30168
  • [26] Fault Diagnosis Method for Bearing of High-Speed Train Based on Multitask Deep Learning
    Gu, Jia
    Huang, Ming
    SHOCK AND VIBRATION, 2020, 2020
  • [27] A Diagnosis Method of Bearing and Stator Fault in Motor Using Rotating Sound Based on Deep Learning
    Nakamura, Hisahide
    Asano, Keisuke
    Usuda, Seiran
    Mizuno, Yukio
    ENERGIES, 2021, 14 (05)
  • [28] Deep Transfer Learning Method Based on 1D-CNN for Bearing Fault Diagnosis
    He, Jun
    Li, Xiang
    Chen, Yong
    Chen, Danfeng
    Guo, Jing
    Zhou, Yan
    SHOCK AND VIBRATION, 2021, 2021
  • [29] TRANSFER LEARNING ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON DEEP DOMAIN ADAPTIVE NETWORK
    Liao, Yu
    Geng, Jiahao
    Guo, Li
    Geng, Bing
    Cui, Kun
    Li, Runze
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2025, 21 (01): : 209 - 225
  • [30] Intelligent Fault Diagnosis of Rolling Bearing Based on Deep Transfer Learning
    Fang, Lei
    Liu, Yao
    Li, Xuan
    Chang, Jiantao
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 753 - 757