HANKEL DETERMINANTS FOR STARLIKE FUNCTIONS WITH RESPECT TO SYMMETRICAL POINTS

被引:1
|
作者
Cho, Nak Eun [1 ]
Sim, Young Jae [2 ]
Thomas, Derek K. [3 ]
机构
[1] Pukyong Natl Univ, Dept Appl Math, Busan 48513, South Korea
[2] Kyungsung Univ, Dept Appl Math, Busan 48434, South Korea
[3] Swansea Univ, Dept Math, Bay Campus, Swansea SA1 8EN, Wales
基金
新加坡国家研究基金会;
关键词
Starlike functions; close-to-convex functions; Hankel determi-nant; coefficient problems; COEFFICIENTS;
D O I
10.4134/BKMS.b220149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove sharp bounds for Hankel determinants for starlike functions f with respect to symmetrical points, i.e., f given by f(z) = z + �& INFIN; n=2 anzn for z & ISIN; D satisfying zf & PRIME;(z) Re f(z) - f(-z) > 0, z & ISIN; D. We also give sharp upper and lower bounds when the coefficients of f are real.
引用
收藏
页码:389 / 404
页数:16
相关论文
共 50 条
  • [41] Initial logarithmic coefficients for functions starlike with respect to symmetric points
    Paweł Zaprawa
    Boletín de la Sociedad Matemática Mexicana, 2021, 27
  • [42] STARLIKE SYMMETRICAL FUNCTIONS
    Al Sarari, Fuad S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (04): : 1145 - 1154
  • [43] APPLICATIONS OF CHEBYSHEV POLYNOMIALS ON λ-PSEUDO BI-STARLIKE AND λ-PSEUDO BI-CONVEX FUNCTIONS WITH RESPECT TO SYMMETRICAL POINTS
    Wanas, Abbas Kareem
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (03): : 568 - 573
  • [44] Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions
    Al-shbeil, Isra
    Gong, Jianhua
    Khan, Shahid
    Khan, Nazar
    Khan, Ajmal
    Khan, Mohammad Faisal
    Goswami, Anjali
    FRACTAL AND FRACTIONAL, 2022, 6 (11)
  • [45] Hankel Determinants and Coefficient Estimates for Starlike Functions Related to Symmetric Booth Lemniscate
    Raza, Mohsan
    Riaz, Amina
    Xin, Qin
    Malik, Sarfraz Nawaz
    SYMMETRY-BASEL, 2022, 14 (07):
  • [46] HERMITIAN-TOEPLITZ AND HANKEL DETERMINANTS FOR STARLIKE FUNCTIONS ASSOCIATED WITH A RATIONAL FUNCTION
    Srivastava, H. M.
    Kumar, Sushil
    Kumar, Virendra
    Cho, Nak Eun
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (12) : 2815 - 2833
  • [47] PASCAL DISTRIBUTION SERIES RELATED TO STARLIKE FUNCTIONS WITH RESPECT TO OTHER POINTS
    Ramachandran, C.
    Murugusundaramoorthy, G.
    Vanitha, L.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (04): : 1419 - 1429
  • [48] Coefficient Inequality for Transforms of Starlike and Convex Functions with Respect to Symmetric Points
    Krishna, Deekonda Vamshee
    Venkateswarlu, Bollineni
    Ramreddy, Thoutreddy
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (02): : 429 - 438
  • [49] Zalcman coefficient functional for tilted starlike functions with respect to conjugate points
    Mohamad, Daud
    Wahid, Nur Hazwani Aqilah Abdul
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 29 (01): : 40 - 51
  • [50] ON HARMONIC STARLIKE FUNCTIONS WITH RESPECT TO SYMMETRIC, CONJUGATE AND SYMMETRIC CONJUGATE POINTS
    Liu, Zhi-Hong
    Sun, Yong
    Wang, Zhi-Gang
    QUAESTIONES MATHEMATICAE, 2014, 37 (01) : 79 - 90