Impact of Hard Carbon Properties on Their Performance in Potassium-Ion Batteries

被引:12
|
作者
Larbi, Louiza [1 ,2 ]
Larhrib, Badre [3 ]
Beda, Adrian [1 ]
Madec, Lenaic [3 ,4 ]
Monconduit, Laure [4 ,5 ]
Ghimbeu, Camelia Matei [1 ,4 ]
机构
[1] Univ Haute Alsace, CNRS, Inst Sci Mat Mulhouse IS2M, Unit Mixte Rech CNRS UMR 7361, F-68100 Mulhouse, France
[2] Univ Strasbourg, F-67081 Strasbourg, France
[3] Univ Pau & Pays Adour, Inst Sci Analyt & Physicochim Environm & Mat IPREM, CNRS, Energy & Environm Solut Univ Pau & Pays Adour E2S, F-64053 Pau, France
[4] CNRS, Reseau Stockage Electrochim Energie, FR3459, Amiens, France
[5] Univ Montpellier, Inst Charles Gerhardt Montpellier ICGM, CNRS, Ecole Natl Super Chim Montpellier ENSCM, F-34293 Montpellier, France
关键词
Hard carbon; Graphite; Anodes; Potassium-ion batteries; Energy storage; SURFACE-CHEMISTRY; ANODE; STORAGE; ELECTRODES; GRAPHITE; GRAPHENE; INSIGHTS; POLYMER;
D O I
10.1021/acsaem.3c00201
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work reports on the synthesis of hard carbon spheres (HCS) and the impact of the pyrolysis temperature (1500 to 1900 degrees C) on the properties of HC and its relationship with the electrochemical performance in potassium-ion batteries (KIBs). Comparison with commercial graphite performance is provided as well. Spherical morphology, disordered structure, and low surface area were obtained for the HCSs. Most properties (interlayer space, active surface area, and oxygen-based functional groups) were found to decrease with increasing pyrolysis temperature, except for the helium density and closed porosity, which increase. However, graphite presents a flake-like morphology with a larger particle size, a higher helium density, an ordered structure with a smaller interlayer distance, and no closed pores. Electrochemical tests in a half-cell vs K+/K showed that HCSs perform better than graphite with higher initial Coulombic efficiency (ICE) and better specific capacities. The HCSs pyrolyzed at 1500 and 1700 degrees C exhibit the best initial Coulombic efficiency, ICEs of 54 and 62%, and specific capacities of 254 and 247 mAh g-1 (C/20, 11.5 mA g-1), respectively. The ICE is affected by multiple surface and bulk parameters but also by electrolyte formulation (67% for 0.8 M KFSI vs 62% for 0.8 M KPF6). The capacity is governed by diffusive phenomena, and a larger interlayer graphitic spacing and defects favor a better insertion of K ions. Closed pores did not lead to an improvement in capacity. Furthermore, HCSs exhibit significantly better capacity retention (97%) than graphite (84%), especially when cycled at high current rates (up to 10C depotassiation rate).
引用
收藏
页码:5274 / 5289
页数:16
相关论文
共 50 条
  • [21] Highly disordered hard carbon derived from skimmed cotton as a high-performance anode material for potassium-ion batteries
    He, Xiaodong
    Liao, Jiaying
    Tang, Zhongfeng
    Xiao, Lina
    Ding, Xiang
    Hu, Qiao
    Wen, Zhaoyin
    Chen, Chunhua
    JOURNAL OF POWER SOURCES, 2018, 396 : 533 - 541
  • [22] Synthesis of monodisperse hollow carbon spheres and their electrochemical performance as anodes in potassium-ion batteries
    Zhang, Zhanwei
    Li, Mingqi
    IONICS, 2024, 30 (07) : 4033 - 4041
  • [23] Advanced Carbon-Based Anodes for Potassium-Ion Batteries
    Wu, Xuan
    Chen, Yanli
    Xing, Zheng
    Lam, Christopher Wai Kei
    Pang, Su-Seng
    Zhang, Wei
    Ju, Zhicheng
    ADVANCED ENERGY MATERIALS, 2019, 9 (21)
  • [24] Developments and prospects of carbon anode materials in potassium-ion batteries
    Liu, Zhaomeng
    Gong, Zhiqing
    He, Kunyang
    Qiu, Peng
    Wang, Xuan-Chen
    Zhao, Lu-Kang
    Gu, Qin-Fen
    Gao, Xuan-Wen
    Luo, Wen-Bin
    SCIENCE CHINA-MATERIALS, 2024, : 709 - 723
  • [25] Aprotic and Protic Ionic Liquids Combined with Olive Pits Derived Hard Carbon for Potassium-Ion Batteries
    Arnaiz, Maria
    Bothe, Annika
    Dsoke, Sonia
    Balducci, Andrea
    Ajuria, Jon
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (14) : A3504 - A3510
  • [26] Rational design of carbon materials as anodes for potassium-ion batteries
    Wu, Yuanming
    Zhao, Haitao
    Wu, Zhenguo
    Yue, Luchao
    Liang, Jie
    Liu, Qian
    Luo, Yonglan
    Gao, Shuyan
    Lu, Siyu
    Chen, Guang
    Shi, Xifeng
    Zhong, Benhe
    Guo, Xiaodong
    Sun, Xuping
    ENERGY STORAGE MATERIALS, 2021, 34 : 483 - 507
  • [27] Rational design of carbon materials as anodes for potassium-ion batteries
    Wu, Yuanming
    Zhao, Haitao
    Wu, Zhenguo
    Yue, Luchao
    Liang, Jie
    Liu, Qian
    Luo, Yonglan
    Gao, Shuyan
    Lu, Siyu
    Chen, Guang
    Shi, Xifeng
    Zhong, Benhe
    Guo, Xiaodong
    Sun, Xuping
    Energy Storage Materials, 2021, 34 : 483 - 507
  • [28] RESEARCH PROGRESS ON CARBON ANODE MATERIALS IN POTASSIUM-ION BATTERIES
    Lei, Yu
    Han, Da
    Qin, Lei
    Zhai, Deng-yun
    Kang, Fei-yu
    CARBON, 2020, 159 : 686 - 686
  • [29] Carbon supported tin sulfide anodes for potassium-ion batteries
    Liu, Jiandongyong
    Yu, Xu
    Bao, Jingze
    Sun, Chuan-Fu
    Li, Yafeng
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 153
  • [30] Research progress on carbon anode materials in potassium-ion batteries
    Lei Yu
    Han Da
    Qin Lei
    Zhai Deng-yun
    Kang Fei-yu
    NEW CARBON MATERIALS, 2019, 34 (06) : 499 - 511