MSA-Net: Multiscale spatial attention network for medical image segmentation

被引:11
|
作者
Fu, Zhaojin [1 ,2 ]
Li, Jinjiang [1 ,2 ,3 ]
Hua, Zhen [1 ,2 ]
机构
[1] Shandong Technol & Business Univ, Sch Informat & Elect Engn, Yantai 264005, Peoples R China
[2] Shandong Technol & Business Univ, Sch Comp Sci & Technol, Yantai 264005, Peoples R China
[3] Coinnovat Ctr Shandong Coll & Univ Future Intellig, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical Image Segmenta-tion; Multiscale Feature Extrac-tion; Deep learning; Attention Mechanism;
D O I
10.1016/j.aej.2023.02.039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Background: Edge accuracy and positional accuracy are the two goals pursued by med-ical image segmentation. In clinical medicine diagnosis and research, these two goals enable medical image segmentation techniques to help in the effective determination of lesions and lesion analysis. At present, U-Net has become the most important network in the field of image segmentation, and the technologies used in various achievements are derived from its architecture, which also proves from practice that the network structure proposed by U-Net is effective. Objective: We have found in a large number of experiments that classical networks indeed show good performance in the field of medical segmentation, but there are still some deficiencies in edge determination and network robustness, especially in the face of blurred edges, the processing results often fail to achieve the expected results. In order to be able to locate segmentation targets and achieve effective determination of blurred edges, a Multiscale Spatial Attention Network (MSA-Net) is proposed as in Fig. 1. Method: In MSA-Net, the Multiscale Pyramid Attention Block (MPAB) is created to enhance the capture of high-level semantic information. In addition, the network uses ASPP, which not only expands the network's field of view, but also captures richer feature information. In the decoding phase, the Feature Fusion Block (FFB) is created to enable better focus on different dimensional information features and to enhance the feature fusion process. Result: To demonstrate the effectiveness of the network, we validate the performance of MSA-Net on four datasets (ISIC2016, DSB2018, JSRT, GlaS) in three different categories. Compared with mainstream networks, MSA-Net shows better results in detail features, target localization, and edge processing. Finally, we also demonstrate the effectiveness of the MSA-Net architecture through ablation experiments. (c) 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:453 / 473
页数:21
相关论文
共 50 条
  • [41] Multimodal parallel attention network for medical image segmentation
    Wang, Zhibing
    Wang, Wenmin
    Li, Nannan
    Zhang, Shenyong
    Chen, Qi
    Jiang, Zhe
    IMAGE AND VISION COMPUTING, 2024, 147
  • [42] Multiscale progressive text prompt network for medical image segmentation
    Han, Xianjun
    Chen, Qianqian
    Xie, Zhaoyang
    Li, Xuejun
    Yang, Hongyu
    COMPUTERS & GRAPHICS-UK, 2023, 116 : 262 - 274
  • [43] A multiscale residual pyramid attention network for medical image fusion
    Fu, Jun
    Li, Weisheng
    Du, Jiao
    Huang, Yuping
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 66
  • [44] TSCA-Net: Transformer based spatial-channel attention segmentation network for medical images
    Fu, Yinghua
    Liu, Junfeng
    Shi, Jun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [45] TSCA-Net: Transformer based spatial-channel attention segmentation network for medical images
    Fu, Yinghua
    Liu, Junfeng
    Shi, Jun
    Computers in Biology and Medicine, 2024, 170
  • [46] MP-FocalUNet: Multiscale parallel focal self-attention U-Net for medical image segmentation
    Wang, Chuan
    Jiang, Mingfeng
    Li, Yang
    Wei, Bo
    Li, Yongming
    Wang, Pin
    Yang, Guang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 260
  • [47] HT-Net: hierarchical context-attention transformer network for medical ct image segmentation
    Mingjun Ma
    Haiying Xia
    Yumei Tan
    Haisheng Li
    Shuxiang Song
    Applied Intelligence, 2022, 52 : 10692 - 10705
  • [48] DSGA-Net: Deeply separable gated transformer and attention strategy for medical image segmentation network
    Sun, Junding
    Zhao, Jiuqiang
    Wu, Xiaosheng
    Tang, Chaosheng
    Wang, Shuihua
    Zhang, Yudong
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (05)
  • [49] MCI Net: Mamba- Convolutional lightweight self-attention medical image segmentation network
    Zhang, Yelin
    Wang, Guanglei
    Ma, Pengchong
    Li, Yan
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2025, 11 (01):
  • [50] WCA-net: A Medical Image Segmentation Network via Wavelet Learning with Coordinated Calibration Attention
    Li, Zenghui
    Song, Changming
    Cheng, Dongxu
    PROCEEDINGS OF 2024 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND INTELLIGENT COMPUTING, BIC 2024, 2024, : 107 - 112