Unraveling the role of basic sites in the hydrogenation of CO2 to formic acid over Ni-based catalysts

被引:13
|
作者
Wang, Yixuan [1 ]
Ban, Hongyan [1 ]
Wang, Yugao [1 ]
Yao, Ruwei [1 ]
Zhao, Shimin [1 ]
Hu, Jiangliang [1 ]
Li, Congming [1 ]
机构
[1] Taiyuan Univ Technol, Coll Chem Engn & Technol, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Basic sites; Mg/Al ratio; CO2; hydrogenation; Formic acid; Metal -support interactions; HYDROXIDE-DERIVED CATALYSTS; SINGLE-ATOM CATALYSTS; CARBON-DIOXIDE; HETEROGENEOUS CATALYSTS; FORMATE; CONVERSION; PD; TRANSFORMATION; DESIGN; PHASE;
D O I
10.1016/j.jcat.2024.115357
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Basic sites profoundly affect the mode and strength of CO2 adsorption in the hydrogenation of CO2 to formic acid (FA), however, the mechanism by which the quantities and strength of basic sites affect the reaction process is not yet clear. Herein, a Ni/MgaAlOx catalyst has been developed and the basic sites of the catalyst can be modulated by simply altering the Mg/Al ratio. Through a series of characterizations and experiments, it was observed that weak and medium basic sites synergistically catalyzed the hydrogenation of CO2 to formic acid, and a reasonable number of weak basic sites can improve reaction performance when a sufficient number of medium basic sites guarantee the fundamental catalytic activity. Moreover, the number and distribution of basic sites are also tightly related to metal-support interactions. This strategy provides theoretical guidance and a feasible scheme for optimizing the performance of non-precious metal heterogeneous catalysts.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Immobilized heterogeneous catalysts for CO2 2 hydrogenation to formic acid: A review
    Li, Hongwei
    Peng, Bo
    Lv, Shuaishuai
    Zhou, Qiuming
    Yan, Zhennan
    Luan, Xuebin
    Liu, Xuandong
    Niu, Congcong
    Liu, Yanfang
    Hou, Jili
    Wang, Zhiqiang
    Chen, Ying
    Yan, Binhang
    Tang, Zhigang
    Hou, Chaopeng
    Qin, Kang
    Wu, Yu
    Xu, Run
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2024, 13
  • [22] Ni-based catalysts for reforming of methane with CO2
    Damyanova, S.
    Pawelec, B.
    Arishtirova, K.
    Fierro, J. L. G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (21) : 15966 - 15975
  • [23] Sorption enhanced CO2 hydrogenation to formic acid over CuZn-MOF derived catalysts
    Kaishyop, Jyotishman
    Gahtori, Jyoti
    Dalakoti, Suman
    Gazi, Md. Jahiruddin
    Khan, Tuhin Suvra
    Bordoloi, Ankur
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (14) : 8457 - 8473
  • [24] Selective hydrogenation of CO2 gas to formic acid over nanostructured Ru-TiO2 catalysts
    Upadhyay, Praveenkumar Ramprakash
    Srivastava, Vivek
    RSC ADVANCES, 2016, 6 (48): : 42297 - 42306
  • [25] Design of nanostructured heterogeneous metal catalysts for CO2 hydrogenation to formic acid
    Mori, Kohsuke
    Sano, Taiki
    Yamashita, Hiromi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [26] CO2 Hydrogenation Over Ni-Based Zeolites: Effect of Catalysts Preparation and Pre-reduction Conditions on Methanation Performance
    M. C. Bacariza
    I. Graça
    A. Westermann
    M. F. Ribeiro
    J. M. Lopes
    C. Henriques
    Topics in Catalysis, 2016, 59 : 314 - 325
  • [27] CO2 Hydrogenation Over Ni-Based Zeolites: Effect of Catalysts Preparation and Pre-reduction Conditions on Methanation Performance
    Bacariza, M. C.
    Graca, I.
    Westermann, A.
    Ribeiro, M. F.
    Lopes, J. M.
    Henriques, C.
    TOPICS IN CATALYSIS, 2016, 59 (2-4) : 314 - 325
  • [28] Formic Acid Synthesis by CO2 Hydrogenation over Single-Atom Catalysts Based on Ru and Cu Embedded in Graphene
    Sredojevic, Dusan N.
    Sljivancanin, Zeljko
    Brothers, Edward N.
    Belic, Milivoj R.
    CHEMISTRYSELECT, 2018, 3 (09): : 2631 - 2637
  • [29] Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review
    Tsiotsias, Anastasios I.
    Charisiou, Nikolaos D.
    Yentekakis, Ioannis V.
    Goula, Maria A.
    NANOMATERIALS, 2021, 11 (01) : 1 - 34
  • [30] Role of perovskites phase in Ni-based catalysts for low temperature CO2 methanation
    Usman, Muhammad
    Podila, Seetharamulu
    Al-Zahrani, Abdulrahim A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 95 : 173 - 184