Atomistic Modeling of the Effect of Temperature on Interfacial Properties of 3D-Printed Continuous Carbon Fiber-Reinforced Polyamide 6 Composite: From Processing to Loading

被引:2
|
作者
Wang, Shenru [1 ,2 ]
Yan, Xin [1 ,2 ]
Chang, Baoning [2 ]
Liu, Siqin [1 ]
Shao, Lihua [3 ]
Zhang, Wuxiang [1 ,2 ]
Zhu, Yingdan [4 ]
Ding, Xilun [1 ,2 ]
机构
[1] Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China
[2] Beihang Univ, Ningbo Inst Technol, Ningbo 315832, Zhejiang, Peoples R China
[3] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Key Lab Robot & Intelligent Mfg Equi, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; continuous fiber-reinforced thermoplasticcomposite; interface; molecular dynamics simulation; forming mechanism; GLASS-TRANSITION TEMPERATURE; MOLECULAR-DYNAMICS; THERMOPLASTIC COMPOSITES; MECHANICAL-PROPERTIES; NANO-INDENTATION; FAILURE ANALYSIS; AB-INITIO; POLYMER; GRAPHENE; BEHAVIOR;
D O I
10.1021/acsami.3c12372
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The combination of continuous fiber-reinforced thermoplastic composites (CFRTPCs) and the continuous fiber 3D printing (CF3DP) technique enables the rapid production of complex structural composites. In these 3D-printed composites, stress transfer primarily relies on the fiber-resin interface, making it a critical performance factor. The interfacial properties are significantly influenced by the temperatures applied during the loading and forming processes. While the effect of the loading temperature has been extensively researched, that of the forming temperature remains largely unexplored, especially from an atomistic perspective. Our research aims to employ molecular dynamics simulations to elucidate the effect of temperature on the interfacial properties of continuous carbon fiber-reinforced polyamide 6 (C/PA6) composites fabricated using the CF3DP technique, considering both loading and forming aspects. Through molecular dynamics simulations, we uncovered a positive correlation between the interfacial strength and forming temperature. Moreover, an increased forming temperature induced a notable shift in the failure mode of C/PA6 under uniaxial tensile loading. Furthermore, it was observed that increasing loading temperatures led to the deterioration of the mechanical properties of PA6, resulting in a gradual transition of the primary failure mode from adhesive failure to cohesive failure. This shift in the failure mode is closely associated with the glass transition of PA6.
引用
收藏
页码:56454 / 56463
页数:10
相关论文
共 50 条
  • [21] Investigation of recovery behavior on 3D-printed continuous plant fiber-reinforced composites
    Long, Yu
    Zhang, Zhongsen
    Bi, Zhixiong
    Fu, Kunkun
    Li, Yan
    ADDITIVE MANUFACTURING, 2024, 88
  • [22] Topology optimization of 3D-printed continuous fiber-reinforced composites considering manufacturability
    Yang, Zhe
    Fu, Kunkun
    Zhang, Zhongsen
    Zhang, Junming
    Li, Yan
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 230
  • [23] A 3-D Printed Continuous Carbon Fiber-Reinforced Composite for Highly Effective Microwave Shielding
    Li, Changyou
    Zhu, Qian
    Lv, Bing
    Huang, Yichou
    Wu, Changying
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (05): : 758 - 762
  • [24] Tensile Properties of 3D-printed Continuous-Fiber-Reinforced Plastics
    Cofaru, Nicolae Florin
    Pascu, Adrian
    Oleksik, Mihaela
    Petruse, Radu
    MATERIALE PLASTICE, 2021, 58 (04) : 271 - 282
  • [25] Properties investigation of 3D printed continuous pineapple leaf fiber-reinforced PLA composite
    Suteja, Jaya
    Firmanto, Hudiyo
    Soesanti, Arum
    Christian, Christian
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2022, 35 (11) : 2052 - 2061
  • [26] Effect of sizing agent on interfacial properties of carbon fiber-reinforced PMMA composite
    Jian, Li
    COMPOSITES AND ADVANCED MATERIALS, 2021, 30
  • [27] Flexural Behavior of 3D-Printed Carbon Fiber-Reinforced Nylon Lattice Beams
    Yalçın, Muhammet Muaz
    Polymers, 2024, 16 (21)
  • [28] Effect of composite coating on interfacial properties of glass fiber reinforced polyamide 6 composites
    Wang G.
    Jin Z.
    Song J.
    Li R.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (12): : 6668 - 6680
  • [29] Interfacial studies on the O3 modified carbon fiber-reinforced polyamide 6 composites
    Li, J.
    APPLIED SURFACE SCIENCE, 2008, 255 (05) : 2822 - 2824
  • [30] Effect of freeze-thaw cycling on the mechanical properties of continuous carbon fiber-reinforced polyamide 6 composites
    Lei, Yongpeng
    Kang, Zhenhang
    Zhang, Jifeng
    Sun, Yiliang
    Zhang, Boming
    POLYMER TESTING, 2022, 114