Short-Term Load Forecasting Based on VMD and Deep TCN-Based Hybrid Model with Self-Attention Mechanism

被引:6
|
作者
Xiong, Qingliang [1 ]
Liu, Mingping [1 ]
Li, Yuqin [1 ]
Zheng, Chaodan [1 ]
Deng, Suhui [1 ,2 ]
机构
[1] Nanchang Univ, Sch Informat Engn, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Jiangxi Prov Key Lab Interdisciplinary Sci, Nanchang 330031, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 22期
基金
中国国家自然科学基金;
关键词
short-term load forecasting; variational modal decomposition; temporal convolutional network; long short-term memory; self-attention mechanism; POWER LOAD; PREDICTION; ACCURACY;
D O I
10.3390/app132212479
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to difficulties with electric energy storage, balancing the supply and demand of the power grid is crucial for the stable operation of power systems. Short-term load forecasting can provide an early warning of excessive power consumption for utilities by formulating the generation, transmission and distribution of electric energy in advance. However, the nonlinear patterns and dynamics of load data still make accurate load forecasting a challenging task. To address this issue, a deep temporal convolutional network (TCN)-based hybrid model combined with variational mode decomposition (VMD) and self-attention mechanism (SAM) is proposed in this study. Firstly, VMD is used to decompose the original load data into a series of intrinsic mode components that are used to reconstruct a feature matrix combined with other external factors. Secondly, a three-layer convolutional neural network is used as a deep network to extract in-depth features between adjacent time points from the feature matrix, and then the output matrix captures the long-term temporal dependencies using the TCN. Thirdly, long short-term memory (LSTM) is utilized to enhance the extraction of temporal features, and the correlation weights of spatiotemporal features are future-adjusted dynamically using SAM to retain important features during the model training. Finally, the load forecasting results can be obtained from the fully connected layer. The effectiveness and generalization of the proposed model were validated on two real-world public datasets, ISO-NE and GEFCom2012. Experimental results indicate that the proposed model significantly improves the prediction accuracy in terms of evaluation metrics, compared with other contrast models.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting
    Wang, Xinyu
    Ma, Wenping
    ENERGY, 2024, 295
  • [42] A hybrid model based on LSTM neural networks with attention mechanism for short-term wind power forecasting
    Marulanda, Geovanny
    Cifuentes, Jenny
    Bello, Antonio
    Reneses, Javier
    WIND ENGINEERING, 2023,
  • [43] Residual BiLSTM based hybrid model for short-term load forecasting in buildings
    Han, Jiacai
    Zeng, Pan
    JOURNAL OF BUILDING ENGINEERING, 2025, 99
  • [44] Short-Term Load Forecasting Based on the Transformer Model
    Zhao, Zezheng
    Xia, Chunqiu
    Chi, Lian
    Chang, Xiaomin
    Li, Wei
    Yang, Ting
    Zomaya, Albert Y.
    INFORMATION, 2021, 12 (12)
  • [45] Short-term load forecasting based on SV model
    Chen, Hao
    Wang, Yurong
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2010, 30 (11): : 86 - 89
  • [46] Short-Term Electric Load Forecasting Based on Signal Decomposition and Improved TCN Algorithm
    Xiang, Xinjian
    Yuan, Tianshun
    Cao, Guangke
    Zheng, Yongping
    ENERGIES, 2024, 17 (08)
  • [47] A deep model for short-term load forecasting applying a stacked autoencoder based on LSTM supported by a multi-stage attention mechanism
    Fazlipour, Zahra
    Mashhour, Elaheh
    Joorabian, Mahmood
    APPLIED ENERGY, 2022, 327
  • [48] A deep model for short-term load forecasting applying a stacked autoencoder based on LSTM supported by a multi-stage attention mechanism
    Fazlipour, Zahra
    Mashhour, Elaheh
    Joorabian, Mahmood
    Applied Energy, 2022, 327
  • [49] Residential load forecasting based on LSTM fusing self-attention mechanism with pooling
    Zang, Haixiang
    Xu, Ruiqi
    Cheng, Lilin
    Ding, Tao
    Liu, Ling
    Wei, Zhinong
    Sun, Guoqiang
    ENERGY, 2021, 229
  • [50] Short-term Load Forecasting Based on Deep Belief Network
    Kong X.
    Zheng F.
    E Z.
    Cao J.
    Wang X.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2018, 42 (05): : 133 - 139