Numerical behavior of the variable-order fractional Van der Pol oscillator

被引:3
|
作者
Ramroodi, N. [1 ]
Tehrani, H. Ahsani [1 ]
Skandari, M. H. Noori [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Shahrood, Iran
关键词
Van der Pol oscillator; Variable-order fractional derivative; Lagrange interpolating polynomial; Legendre-Gauss-Lobatto points; DERIVATIVES;
D O I
10.1016/j.jocs.2023.102174
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we investigate the behavior of a Van der Pol oscillator based on the variable-order Caputo fractional derivatives. After variable-order fractional modeling, we discretize the obtained equations using the Legendre-Gauss-Lobatto points and employ Lagrange interpolating functions. An algebraic system is gained that approximates the variables and their fractional derivatives. Also, an approach is suggested to calculate the differentiation matrix related to the variable-order Caputo fractional derivative. Moreover, an algorithm is presented for solving the variable-order Caputo fractional Van der Pol equation on large time-interval. Numerical simulations are provided to represent the applicability of the suggested method and to see the treatment of variable-order Caputo fractional Van der Pol oscillator.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Van der Pol oscillator with time variable parameters
    L. Cveticanin
    Acta Mechanica, 2013, 224 : 945 - 955
  • [22] Van der Pol oscillator with time variable parameters
    Cveticanin, L.
    ACTA MECHANICA, 2013, 224 (05) : 945 - 955
  • [23] Chaos Synchronization of the Modified Van der Pol-Duffing Oscillator of Fractional Order
    Buslowicz, Mikolaj
    Makarewicz, Adam
    RECENT ADVANCES IN AUTOMATION, ROBOTICS AND MEASURING TECHNIQUES, 2014, 267 : 33 - 43
  • [24] Hopf-Type Bifurcation and Synchronization of a Fractional Order Van der Pol Oscillator
    Xiao Min
    Zheng Wei Xing
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 193 - 198
  • [25] Super-harmonic resonance of fractional-order van der Pol oscillator
    Wei Peng
    Shen Yong-Jun
    Yang Shao-Pu
    ACTA PHYSICA SINICA, 2014, 63 (01)
  • [26] The Dynamics Behavior of Coupled Generalized van der Pol Oscillator with Distributed Order
    Al Themairi, Asma
    Farghaly, Ahmed
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [27] Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation
    Diaz, G.
    Coimbra, C. F. M.
    NONLINEAR DYNAMICS, 2009, 56 (1-2) : 145 - 157
  • [28] Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation
    G. Diaz
    C. F. M. Coimbra
    Nonlinear Dynamics, 2009, 56 : 145 - 157
  • [29] Numerical Solution of the Fractional Order Duffing–van der Pol Oscillator Equation by Using Bernoulli Wavelets Collocation Method
    Rahimkhani P.
    Moeti R.
    International Journal of Applied and Computational Mathematics, 2018, 4 (2)
  • [30] Fractional Stochastic Van der Pol Oscillator with Piecewise Derivatives
    Kumar, Atul
    Alam, Khursheed
    Rahman, Mati ur
    Emadifar, Homan
    Arora, Geeta
    Hamoud, Ahmed A.
    JOURNAL OF MATHEMATICS, 2024, 2024