The unreasonable effectiveness of large language models in zero-shot semantic annotation of legal texts

被引:11
|
作者
Savelka, Jaromir [1 ]
Ashley, Kevin D. [2 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Sch Law, Pittsburgh, PA 15260 USA
来源
关键词
legal text analytics; large language models (LLM); zero-shot classification; semantic annotation; text annotation; CLASSIFICATION; EXTRACTION; DECISIONS; SEARCH;
D O I
10.3389/frai.2023.1279794
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The emergence of ChatGPT has sensitized the general public, including the legal profession, to large language models' (LLMs) potential uses (e.g., document drafting, question answering, and summarization). Although recent studies have shown how well the technology performs in diverse semantic annotation tasks focused on legal texts, an influx of newer, more capable (GPT-4) or cost-effective (GPT-3.5-turbo) models requires another analysis. This paper addresses recent developments in the ability of LLMs to semantically annotate legal texts in zero-shot learning settings. Given the transition to mature generative AI systems, we examine the performance of GPT-4 and GPT-3.5-turbo(-16k), comparing it to the previous generation of GPT models, on three legal text annotation tasks involving diverse documents such as adjudicatory opinions, contractual clauses, or statutory provisions. We also compare the models' performance and cost to better understand the trade-offs. We found that the GPT-4 model clearly outperforms the GPT-3.5 models on two of the three tasks. The cost-effective GPT-3.5-turbo matches the performance of the 20x more expensive text-davinci-003 model. While one can annotate multiple data points within a single prompt, the performance degrades as the size of the batch increases. This work provides valuable information relevant for many practical applications (e.g., in contract review) and research projects (e.g., in empirical legal studies). Legal scholars and practicing lawyers alike can leverage these findings to guide their decisions in integrating LLMs in a wide range of workflows involving semantic annotation of legal texts.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] ZVQAF: Zero-shot visual question answering with feedback from large language models
    Liu, Cheng
    Wang, Chao
    Peng, Yan
    Li, Zhixu
    NEUROCOMPUTING, 2024, 580
  • [33] Improving Zero-Shot Stance Detection by Infusing Knowledge from Large Language Models
    Guo, Mengzhuo
    Jiang, Xiaorui
    Liao, Yong
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 121 - 132
  • [34] A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with Large Language Models
    Zhuang, Shengyao
    Zhuang, Honglei
    Koopman, Bevan
    Zuccon, Guido
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 38 - 47
  • [35] Zero-Shot Recommendations with Pre-Trained Large Language Models for Multimodal Nudging
    Harrison, Rachel M.
    Dereventsov, Anton
    Bibin, Anton
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1535 - 1542
  • [36] Extensible Prompts for Language Models on Zero-shot Language Style Customization
    Ge, Tao
    Hu, Jing
    Dong, Li
    Mao, Shaoguang
    Xia, Yan
    Wang, Xun
    Chen, Si-Qing
    Wei, Furu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [37] Decoupling Zero-Shot Semantic Segmentation
    Ding, Jian
    Xue, Nan
    Xia, Gui-Song
    Dai, Dengxin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11573 - 11582
  • [38] Enhancing zero-shot multilingual semantic parsing: A framework leveraging large language models for data augmentation and advanced prompting techniques
    Do, Dinh-Truong
    Nguyen, Minh-Phuong
    Nguyen, Le-Minh
    NEUROCOMPUTING, 2025, 618
  • [39] Semantic Autoencoder for Zero-Shot Learning
    Kodirov, Elyor
    Xiang, Tao
    Gong, Shaogang
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4447 - 4456
  • [40] Zero-Shot Semantic Parsing for Instructions
    Givoli, Ofer
    Reichart, Roi
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 4454 - 4464