Generalized Eigenvalues of the Perron-Frobenius Operators of Symbolic Dynamical Systems

被引:1
|
作者
Chiba, Hayato [1 ]
Ikeda, Masahiro [2 ,3 ]
Ishikawa, Isao [2 ,4 ]
机构
[1] Tohoku Univ, Adv Inst Mat Res, Sendai 9808557, Japan
[2] RIKEN, Ctr Adv Intelligence Project, Tokyo 1030027, Japan
[3] Keio Univ, Dept Math, Yokohama 2238522, Japan
[4] Ehime Univ, Ctr Data Sci, Matsuyama 7908577, Japan
来源
关键词
generalized eigenvalue; symbolic dynamical systems; Perron-Frobenius operator; Koopman opera-tor; generalized spectral theory; RIGGED HILBERT-SPACES; SPECTRAL DECOMPOSITIONS; LINEAR-OPERATORS; RESONANCES; IRREVERSIBILITY; BOUNDS;
D O I
10.1137/22M1476204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized spectral theory is an effective approach to analyze a linear operator on a Hilbert space \scrH with a continuous spectrum. The generalized spectrum is computed via analytic continuations of the resolvent operators using a dense locally convex subspace X of \scrH and its dual space X\prime. The three topological spaces X \subset \scrH \subset X\prime are called the rigged Hilbert space or the Gelfand triplet. In this paper, the generalized spectra of the Perron-Frobenius operators of the one-sided and two-sided shifts of finite type (symbolic dynamical systems) are determined. A one-sided subshift of finite type which is conjugate to the multiplication with the golden ratio on [0,1] modulo 1 is also considered. A new construction of the Gelfand triplet for the generalized spectrum of symbolic dynamical systems is proposed by means of an algebraic procedure. The asymptotic formula of the iteration of Perron-Frobenius operators is also given. The iteration converges to the mixing state whose rate of convergence is determined by the generalized spectrum.
引用
收藏
页码:2825 / 2855
页数:31
相关论文
共 50 条
  • [21] A Perron-Frobenius theorem for positive polynomial operators in Banach lattices
    Anh, Bui The
    Son, Nguyen Khoa
    Thanh, Duong Dang Xuan
    POSITIVITY, 2009, 13 (04) : 709 - 716
  • [22] A Perron-Frobenius theorem for positive polynomial operators in Banach lattices
    Bui The Anh
    Nguyen Khoa Son
    Duong Dang Xuan Thanh
    Positivity, 2009, 13 : 709 - 716
  • [23] Legendre analysis, the thermodynamic formalism and spectra of the Perron-Frobenius operators
    Antonevich, A.B.
    Bakhtin, V.I.
    Lebedev, A.V.
    Sarazhinskij, D.S.
    Doklady Akademii Nauk, 2003, 390 (03) : 295 - 298
  • [24] Ulam method and fractal Weyl law for Perron-Frobenius operators
    Ermann, L.
    Shepelyansky, D. L.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 75 (03): : 299 - 304
  • [25] Koopman and Perron-Frobenius operators on reproducing kernel Banach spaces
    Ikeda, Masahiro
    Ishikawa, Isao
    Schlosser, Corbinian
    CHAOS, 2022, 32 (12)
  • [26] PERRON-FROBENIUS PROPERTY FOR MULTIFUNCTIONS
    AUBIN, JP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (20): : 911 - 914
  • [27] Ulam method and fractal Weyl law for Perron-Frobenius operators
    L. Ermann
    D. L. Shepelyansky
    The European Physical Journal B, 2010, 75 : 299 - 304
  • [28] Legendre analysis, thermodynamic formalism, and spectra of Perron-Frobenius operators
    Antonevich, AB
    Bakhtin, VI
    Lebedev, AV
    Sarazhinsky, DS
    DOKLADY MATHEMATICS, 2003, 67 (03) : 343 - 345
  • [29] A NONLINEAR PERRON-FROBENIUS THEOREM
    SINE, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (02) : 331 - 336
  • [30] The Perron-Frobenius Theorem Revisited
    Heydar Radjavi
    Positivity, 1999, 3 : 317 - 332