Impact of using sinogram domain data in the super-resolution of CT images on diagnostic information

被引:1
|
作者
Yu, Minwoo [1 ]
Han, Minah [1 ,2 ]
Baek, Jongduk [1 ,2 ,3 ]
机构
[1] Yonsei Univ, Coll Comp, Dept Artificial Intelligence, Seoul, South Korea
[2] Bareunex Imaging Inc, Seoul, South Korea
[3] Yonsei Univ, Coll Comp, Dept Artificial Intelligence, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
convolutional neural network-based ideal observer; deep-learning-based super-resolution; Rayleigh discrimination task; task-based image quality; IDEAL-OBSERVER; NETWORK; MODEL;
D O I
10.1002/mp.16807
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundIn recent times, deep-learning-based super-resolution (DL-SR) techniques for computed tomography (CT) images have shown outstanding results in terms of full-reference image quality (FR-IQ) metrics (e.g., root mean square error and structural similarity index metric), which assesses IQ by measuring its similarity to the high-resolution (HR) image. In addition, IQ can be evaluated via task-based IQ (Task-IQ) metrics that evaluate the ability to perform specific tasks. Ironically, most proposed image domain-based SR techniques are not possible to improve a Task-IQ metric, which assesses the amount of information related to diagnosis.PurposeIn the case of CT imaging systems, sinogram domain data can be utilized for SR techniques. Therefore, this study aims to investigate the impact of utilizing sinogram domain data on diagnostic information restoration ability.MethodsWe evaluated three DL-SR techniques: using image domain data (Image-SR), using sinogram domain data (Sinogram-SR), and using sinogram as well as image domain data (Dual-SR). For Task-IQ evaluation, the Rayleigh discrimination task was used to evaluate diagnostic ability by focusing on the resolving power aspect, and an ideal observer (IO) can be used to perform the task. In this study, we used a convolutional neural network (CNN)-based IO that approximates the IO performance. We compared the IO performances of the SR techniques according to the data domain to evaluate the discriminative information restoration ability.ResultsOverall, the low-resolution (LR) and SR exhibit lower IO performances compared with that of HR owing to their degraded discriminative information when detector binning is used. Next, between the SR techniques, Image-SR does not show superior IO performances compared to the LR image, but Sinogram-SR and Dual-SR show superior IO performances than the LR image. Furthermore, in Sinogram-SR, we confirm that FR-IQ and IO performance are positively correlated. These observations demonstrate that sinogram domain upsampling improves the representation ability for discriminative information in the image domain compared to the LR and Image-SR.ConclusionsUnlike Image-SR, Sinogram-SR can improve the amount of discriminative information present in the image domain. This demonstrates that to improve the amount of discriminative information on the resolving power aspect, it is necessary to employ sinogram domain processing.
引用
收藏
页码:2817 / 2833
页数:17
相关论文
共 50 条
  • [41] Robust Dual Images Super-resolution
    Zhang, Xiaohong
    Zhang, Yun
    Qian, Guiping
    Qin, Aihong
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [42] Super-resolution of Defocus Blurred Images
    Seyyedyazdi S.J.
    Hassanpour H.
    Hassanpour, H. (h.hassanpour@shahroodut.ac.ir), 1600, Materials and Energy Research Center (33): : 539 - 545
  • [43] A SUPER-RESOLUTION ALGORITHM FOR SAR IMAGES
    DELVES, LM
    PRYDE, GC
    LUTTRELL, SP
    INVERSE PROBLEMS, 1988, 4 (03) : 681 - 703
  • [44] Super-resolution on Remote Sensing Images
    Yang, Yuting
    Lam, Kin-Man
    Dong, Junyu
    Sun, Xin
    Jian, Muwei
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2021, 2021, 11766
  • [45] Comparative study on super-resolution of images
    Ibrahim, I. I.
    Ahmed, M. K.
    Nossair, Z. B.
    Allam, F. A.
    2006 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS, 2006, : 220 - +
  • [46] Super-Resolution from Corneal Images
    Nitschke, Christian
    Nakazawa, Atsushi
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
  • [47] Super-resolution algorithms for SAR images
    Guglielmi, V
    Castanie, F
    Piau, P
    IMAGE RECONSTRUCTION AND RESTORATION II, 1997, 3170 : 195 - 202
  • [48] Super-resolution reconstruction of hyperspectral images
    Akgun, T
    Altunbasak, Y
    Mersereau, RM
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (11) : 1860 - 1875
  • [49] Super-resolution for in situ Plankton Images
    Ma, Wenqi
    Chen, Tao
    Zhang, Zhengwen
    Yang, Zhenyu
    Dong, Chao
    Qiao, Jianping
    Li, Jianping
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 3676 - 3685
  • [50] Super-resolution of Defocus Blurred Images
    Seyyedyazdi, S. J.
    Hassanpour, H.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (04): : 539 - 545