Comparison of different quasi-static loading conditions of additively manufactured composite hexagonal and auxetic cellular structures

被引:33
|
作者
Zhou, Jin [1 ,2 ]
Liu, Haibao [3 ]
Dear, John P. [1 ]
Falzon, Brian G. [4 ]
Kazanci, Zafer [5 ,6 ]
机构
[1] Imperial Coll London, Dept Mech Engn, London SW7 2AZ, England
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Shaanxi, Peoples R China
[3] Cranfield Univ, Ctr Aeronaut, Sch Aerosp Transport & Mfg, Cranfield MK43 0AL, England
[4] RMIT Univ, Sch Engn, Melbourne, Australia
[5] Queens Univ Belfast, Sch Mech & Aerosp Engn, Adv Composites Res Grp, Belfast BT9 5AH, North Ireland
[6] Queens Univ Belfast, Sch Mech & Aerosp Engn, Ashby Bldg,125 Stranmillis Rd, Belfast BT9 5AH, North Ireland
关键词
Auxetic; Cellular structures; Additive manufacturing; 3D printing; Energy absorption; Composite; INPLANE STIFFNESS; HONEYCOMB; BEHAVIOR;
D O I
10.1016/j.ijmecsci.2022.108054
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Auxetic cellular structures have the potential to revolutionise sandwich panel cores due to their potential su- perior energy absorption capability. Because of their negative Poisson's ratio, auxetics behave counterintuitively and contract orthogonally under an applied compressive force, resulting in a densification of material in the vicinity of the applied load. This study investigates three cellular structures and compares their compressive energy absorbing characteristics under in-plane and axial loading conditions. Three unit cell topologies are considered; a conventional hexagonal, re-entrant and double arrowhead auxetic structures. The samples were additively manufactured using two different materials, a conventional Nylon and a carbon fibre reinforced composite alternative (Onyx). Finite element simulations are experimentally validated under out of and in-plane loading conditions and the double arrowhead (auxetic) structure is shown to exhibit comparatively superior energy absorption. For the carbon fibre reinforced material, Onyx, the specific energy absorbed by the double arrowhead geometry was 125% and 244% greater than the hexagonal (non-auxetic) and re-entrant (auxetic) structures respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Quasi-static and Dynamic Behavior of Additively Manufactured Metallic Lattice Cylinders
    Sadeghi, Hossein
    Bhate, Dhruv
    Abraham, Joseph
    Magallanes, Joseph
    SHOCK COMPRESSION OF CONDENSED MATTER - 2017, 2018, 1979
  • [22] MECHANICAL RESPONSE OF ADDITIVE MANUFACTURED REGULAR CELLULAR SCTRUCTURES IN QUASI-STATIC LOADING CONDITIONS - PART II: NUMERICAL INVESTIGATIONS
    Platek, Pawel
    Janiszewski, Jacek
    Malachowski, Jerzy
    Dziewit, Piotr
    Grazka, Michal
    Paszkowski, Robert
    Sarzynski, Marcin
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON MECHANICS AND MATERIALS IN DESIGN (M2D2017), 2017, : 1075 - 1090
  • [23] Mechanical characterisation and crashworthiness performance of additively manufactured polymer-based honeycomb structures under in-plane quasi-static loading
    Isaac, Chukwuemeke William
    Sokolowski, Andrzej
    Duddeck, Fabian
    Adamiak, Marcin
    Pakiela, Wojciech
    Aremu, Adedeji
    VIRTUAL AND PHYSICAL PROTOTYPING, 2023, 18 (01)
  • [24] Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading
    Ling, Chen
    Cernicchi, Alessandro
    Gilchrist, Michael D.
    Cardiff, Philip
    MATERIALS & DESIGN, 2019, 162 : 106 - 118
  • [25] A performance metric for additively manufactured microlattice structures under different loading conditions
    Despres, Nathaniel
    Cyr, Edward
    Mohammadi, Mohsen
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2019, 233 (09) : 1814 - 1829
  • [26] Crushing performance of auxetic tubes under quasi-static and impact loading
    Milad Oloumi Doudaran
    Hamed Ahmadi
    GholamHossein Liaghat
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [27] Crushing performance of auxetic tubes under quasi-static and impact loading
    Doudaran, Milad Oloumi
    Ahmadi, Hamed
    Liaghat, GholamHossein
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (06)
  • [28] Mechanical characterisation of additively manufactured PA12 lattice structures under quasi-static compression
    Nasim, Mohammad
    Galvanetto, Ugo
    MATERIALS TODAY COMMUNICATIONS, 2021, 29
  • [29] Numerical and constitutive modeling of quasi-static and dynamic mechanical behavior in graded additively manufactured lattice structures
    Wang, Erdong
    Zhou, Jiahui
    Guo, Xiao
    Gu, Man
    Wang, Huiran
    Zhai, Wei
    VIRTUAL AND PHYSICAL PROTOTYPING, 2023, 18 (01)
  • [30] Microstructure-topology relationship effects on the quasi-static and dynamic behavior of additively manufactured lattice structures
    Hazeli, Kavan
    Babamiri, Behzad Bahrami
    Indeck, Joseph
    Minor, Andrew
    Askari, Hesam
    MATERIALS & DESIGN, 2019, 176