Rationalization of passivation strategies toward high-performance perovskite solar cells

被引:169
|
作者
Zhang, Zhihao [1 ,2 ,5 ,6 ,7 ]
Qiao, Lu [4 ]
Meng, Ke [3 ]
Long, Run [4 ]
Chen, Gang [3 ]
Gao, Peng [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Prov Key Lab Nanomat Fujian Inst Res Struct, Fuzhou 350002, Fujian, Peoples R China
[3] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[4] Beijing Normal Univ, Coll Chem, Key Lab Theoret & Computat Photochem, Minist Educ, Beijing 100875, Peoples R China
[5] Chinese Acad Sci, Xiamen Inst Rare Earth Mat, Haixi Inst, Lab Adv Funct Mat, Xiamen 361021, Peoples R China
[6] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Peoples R China
[7] Sichuan Univ, Engn Res Ctr Alternat Energy Mat & Devices, Minist Educ, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
SURFACE PHOTOVOLTAGE SPECTROSCOPY; ELECTRON-HOLE RECOMBINATION; LEAD HALIDE PEROVSKITES; LEWIS-BASE PASSIVATION; INORGANIC PEROVSKITE; HYBRID PEROVSKITE; PLANAR PEROVSKITE; CARRIER LIFETIMES; EFFICIENT; FILMS;
D O I
10.1039/d2cs00217e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lead halide perovskite solar cells (PSCs) have shown unprecedented development in efficiency and progressed relentlessly in improving stability. All the achievements have been accompanied by diverse passivation strategies to circumvent the pervasive defects in perovskite materials, which play crucial roles in the process of charge recombination, ion migration, and component degradation. Among the tremendous efforts made to solve these issues and achieve high-performance PSCs, we classify and review both well-established and burgeoning passivation strategies to provide further guidance for the passivation protocols in PSCs, including chemical passivation to eliminate defects by the formation of chemical bonds, physical passivation to eliminate defects by strain relaxation or physical treatments, energetic passivation to improve the stability toward light and oxygen, and field-effect passivation to regulate the interfacial carrier behavior. The subtle but non-trivial consequences from various passivation strategies need advanced characterization techniques combining synchrotron-based X-ray analysis, capacitance-based measurements, spatially resolved imaging, fluorescent molecular probe, Kelvin probe force microscope, etc., to scrutinize the mechanisms. In the end, challenges and prospective research directions on advancing these passivation strategies are proposed. Judicious combinations among chemical, physical, energetic, and field-effect passivation deserve more attention for future high-efficiency and stable perovskite photovoltaics.
引用
收藏
页码:163 / 195
页数:33
相关论文
共 50 条
  • [41] In situ nanocrystal seeding perovskite crystallization toward high-performance solar cells
    Wu, Wen
    Fang, Min
    Chao, Lingfeng
    Tao, Lei
    Lu, Hui
    Li, Bixin
    Ran, Xueqin
    Li, Ping
    Xia, Yingdong
    Zhang, Hui
    Chen, Yonghua
    Materials Today Energy, 2021, 22
  • [42] Strengthened Buried Interface via Metal Sulfide Passivation Toward High-Performance CsPbBr3 Perovskite Solar Cells
    Zhu, Shihui
    Zhang, Teng
    Liu, Wenwen
    Zhao, Baohua
    Chen, Ziming
    Sun, Xinyu
    Wang, Tailin
    Chen, Yanli
    Liu, Heyuan
    Xue, Qifan
    Li, Xiyou
    SOLAR RRL, 2024, 8 (06)
  • [43] Indium-assisted defect passivation engineering toward antisolvent-free high-performance and stable perovskite solar cells
    Liang, Guijie
    Zhang, Wanlei
    Song, Jiawei
    Cheng, Jiahao
    Deng, Yuheng
    Yan, Kanghao
    Yang, Yichen
    Yao, Jun
    Shen, Wenjian
    Zhang, Xin
    Li, Bin
    Liang, Ying
    Peng, Yong
    Li, Wangnan
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2025, 98 (03)
  • [44] Strategies for constructing high-performance tin-based perovskite solar cells
    Nakamanya, Barbara
    Kakooza, Tonny
    Sun, Qianwen
    Haghayegh, Marjan
    Balilonda, Andrew
    Tebyetekerwa, Mike
    Yang, Shengyuan
    Zhu, Meifang
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (12) : 4184 - 4207
  • [45] A synchronous defect passivation strategy for constructing high-performance and stable planar perovskite solar cells
    Sun, Yansen
    Pang, Zhenyu
    Quan, Yingnan
    Han, Donglai
    Zhang, Xinyuan
    Ge, Xin
    Wang, Fengyou
    Sun, Yunfei
    Yang, Jinghai
    Yang, Lili
    Chemical Engineering Journal, 2021, 413
  • [46] A synchronous defect passivation strategy for constructing high-performance and stable planar perovskite solar cells
    Sun, Yansen
    Pang, Zhenyu
    Quan, Yingnan
    Han, Donglai
    Zhang, Xinyuan
    Ge, Xin
    Wang, Fengyou
    Sun, Yunfei
    Yang, Jinghai
    Yang, Lili
    CHEMICAL ENGINEERING JOURNAL, 2021, 413
  • [47] Bi-molecular kinetic competition for surface passivation in high-performance perovskite solar cells
    Ma, Yinyi
    Li, Faming
    Gong, Jue
    Wang, Lina
    Tang, Xiao
    Zeng, Peng
    Chan, Pok Fung
    Zhu, Weidong
    Zhang, Chunfu
    Liu, Mingzhen
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (04) : 1570 - 1579
  • [48] Reproducible, high-performance perovskite solar cells
    Ashworth, Claire
    NATURE REVIEWS MATERIALS, 2021, 6 (05): : 454 - 454
  • [49] Reproducible, high-performance perovskite solar cells
    Ashworth, Claire
    NATURE REVIEWS MATERIALS, 2021, 6 (04) : 293 - 293
  • [50] Reproducible, high-performance perovskite solar cells
    Claire Ashworth
    Nature Reviews Materials, 2021, 6 : 293 - 293