Ground state solution for critical Schrodinger equation with harmonic potential

被引:4
|
作者
Su, Yu [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Schr?dinger equation; Harmonic potential; Critical exponent; Berestycki-Lions theorem; EXISTENCE;
D O I
10.1016/j.jmaa.2022.126661
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the existence and regularity of solution to the critical Schrodinger equation with harmonic potential. We generalize an earlier theorem due to Berestycki and Lions (1983) [3] about the subcritical case to the critical case.(c) 2022 Elsevier Inc. All rights reserved.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [21] Schrodinger equations with critical nonlinearity, singular potential and a ground state
    Costa, David G.
    do O, Joao Marcos
    Tintarev, Kyril
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (02) : 240 - 252
  • [22] Ground state in the energy super-critical Gross-Pitaevskii equation with a harmonic potential
    Bizon, Piotr
    Ficek, Filip
    Pelinovsky, Dmitry E.
    Sobieszek, Szymon
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 210
  • [23] Ground state of the Gross-Pitaevskii equation with a harmonic potential in the energy-critical case
    Pelinovsky, Dmitry E.
    Sobieszek, Szymon
    ASYMPTOTIC ANALYSIS, 2024, 139 (1-2) : 1 - 29
  • [24] Ground state solutions for a modified fractional Schrodinger equation with critical exponent
    Wu, Xian
    Zhang, Wei
    Zhou, Xingwei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 2924 - 2944
  • [25] Nonlinear Schrodinger equation with harmonic potential
    Shu, J.
    Zhang, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (06)
  • [26] Asymptotical behavior of ground state solutions for critical quasilinear Schrodinger equation
    Chen, Yongpeng
    Guo, Yuxia
    Tang, Zhongwei
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (01) : 21 - 46
  • [27] Existence of a ground state and scattering for a nonlinear Schrodinger equation with critical growth
    Akahori, Takafumi
    Ibrahim, Slim
    Kikuchi, Hiroaki
    Nawa, Hayato
    SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (02): : 545 - 609
  • [28] Existence of ground state solutions for a quasilinear Schrodinger equation with critical growth
    Wu, Ke
    Zhou, Fen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (02) : 81 - 88
  • [29] On the ground state solution for a critical fractional Laplacian equation
    Hua, Yongxia
    Yu, Xiaohui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 87 : 116 - 125
  • [30] Ground State Solution of Critical p-Biharmonic Equation Involving Hardy Potential
    Yu, Yang
    Zhao, Yulin
    Luo, Chaoliang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (01) : 501 - 512