Ground state solution for critical Schrodinger equation with harmonic potential
被引:4
|
作者:
Su, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Anhui, Peoples R ChinaAnhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Anhui, Peoples R China
Su, Yu
[1
]
机构:
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Anhui, Peoples R China
We consider the existence and regularity of solution to the critical Schrodinger equation with harmonic potential. We generalize an earlier theorem due to Berestycki and Lions (1983) [3] about the subcritical case to the critical case.(c) 2022 Elsevier Inc. All rights reserved.
机构:
Shizuoka Univ, Fac Engn, Hamamatsu, Shizuoka 4328561, JapanShizuoka Univ, Fac Engn, Hamamatsu, Shizuoka 4328561, Japan
Akahori, Takafumi
论文数: 引用数:
h-index:
机构:
Ibrahim, Slim
Kikuchi, Hiroaki
论文数: 0引用数: 0
h-index: 0
机构:
Tsuda Coll, Dept Math, Kodaira, Tokyo 1878577, JapanShizuoka Univ, Fac Engn, Hamamatsu, Shizuoka 4328561, Japan
Kikuchi, Hiroaki
Nawa, Hayato
论文数: 0引用数: 0
h-index: 0
机构:
Osaka Univ, Div Math Sci, Dept Syst Innovat, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, JapanShizuoka Univ, Fac Engn, Hamamatsu, Shizuoka 4328561, Japan
机构:
Yunnan Univ, Dept Math & Stat, Kunming 650091, Yunnan, Peoples R China
Zhaotong Univ, Dept Math & Stat, Zhaotong 657000, Yunnan, Peoples R ChinaYunnan Univ, Dept Math & Stat, Kunming 650091, Yunnan, Peoples R China
Wu, Ke
Zhou, Fen
论文数: 0引用数: 0
h-index: 0
机构:
Zhaotong Univ, Dept Informat Sci & Technol, Zhaotong 657000, Yunnan, Peoples R ChinaYunnan Univ, Dept Math & Stat, Kunming 650091, Yunnan, Peoples R China