A Localization-Delocalization Transition for Nonhomogeneous Random Matrices

被引:0
|
作者
Shou, Laura [1 ,2 ,3 ]
van Handel, Ramon [4 ]
机构
[1] Univ Minnesota, Sch Math, 206 Church St SE, Minneapolis, MN 55455 USA
[2] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[3] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA
[4] Princeton Univ, Fine Hall 207, Princeton, NJ 08544 USA
关键词
Nonhomogeneous random matrices; Localization-delocalization transition; Approximate eigenvectors; SEMICIRCLE LAW; EIGENVECTORS;
D O I
10.1007/s10955-024-03234-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider NxN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times N$$\end{document} self-adjoint Gaussian random matrices defined by an arbitrary deterministic sparsity pattern with d nonzero entries per row. We show that such random matrices exhibit a canonical localization-delocalization transition near the edge of the spectrum: when d >> logN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\gg \log N$$\end{document} the random matrix possesses a delocalized approximate top eigenvector, while when dMUCH LESS-THANlogN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ll \log N$$\end{document} any approximate top eigenvector is localized. The key feature of this phenomenon is that it is universal with respect to the sparsity pattern, in contrast to the delocalization properties of exact eigenvectors which are sensitive to the specific sparsity pattern of the random matrix.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials
    Huang, Changming
    Ye, Fangwei
    Chen, Xianfeng
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Torner, Lluis
    SCIENTIFIC REPORTS, 2016, 6
  • [22] PERCOLATION ON A CONTINUUM AND LOCALIZATION-DELOCALIZATION TRANSITION IN AMORPHOUS SEMICONDUCTORS
    ZALLEN, R
    SCHER, H
    PHYSICAL REVIEW B-SOLID STATE, 1971, 4 (12): : 4471 - +
  • [23] ELECTRONIC LOCALIZATION-DELOCALIZATION TRANSITION IN GE-AU
    DODSON, BW
    MCMILLAN, WL
    MOCHEL, JM
    DYNES, RC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 338 - 338
  • [24] Localization-delocalization transition for disordered cubic harmonic lattices
    Pinski, S. D.
    Schirmacher, W.
    Whall, T.
    Roemer, R. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (40)
  • [25] Localization-delocalization transition in an electromagnetically induced photonic lattice
    Tian, Rui
    Li, Shuai
    Arzamasovs, Maksims
    Gao, Hong
    Zhang, Yong-Chang
    Liu, Bo
    PHYSICAL REVIEW A, 2023, 108 (04)
  • [26] Localization-delocalization transition in metal-dielectric films
    Genov, DA
    Sarychev, AK
    Shalaev, VM
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES II, 2004, 5512 : 20 - 27
  • [27] Statistical properties of a localization-delocalization transition in one dimension
    Steiner, M
    Chen, Y
    Fabrizio, M
    Gogolin, AO
    PHYSICAL REVIEW B, 1999, 59 (23): : 14848 - 14851
  • [28] Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials
    Changming Huang
    Fangwei Ye
    Xianfeng Chen
    Yaroslav V. Kartashov
    Vladimir V. Konotop
    Lluis Torner
    Scientific Reports, 6
  • [29] Localization-delocalization transition in a system of quantum kicked rotors
    Creffield, CE
    Hur, G
    Monteiro, TS
    PHYSICAL REVIEW LETTERS, 2006, 96 (02)
  • [30] PHASE TRANSITION OF LOCALIZATION-DELOCALIZATION TYPE IN ADSORPTION LAYER
    BERING, BP
    MUMINOV, SZ
    SERPINSK.VV
    DOKLADY AKADEMII NAUK SSSR, 1967, 172 (03): : 625 - &