Disease insights from medical data using interpretable risk prediction models

被引:0
|
作者
Tang, Alice [1 ]
Sirota, Marina [1 ]
机构
[1] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA 94143 USA
来源
NATURE AGING | 2024年 / 4卷 / 03期
关键词
D O I
10.1038/s43587-024-00585-4
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Our study demonstrates how clinical data can be used to build machine-learning models to predict the risk of Alzheimer's disease (AD) onset and can be integrated with knowledge networks to gain insights into the pathophysiology of AD, with a focus on a better understanding of disease sex differences.
引用
收藏
页码:293 / 294
页数:2
相关论文
共 50 条
  • [21] Obtaining interpretable fuzzy classification rules from medical data
    Nauck, Detlef
    Kruse, Rudolf
    Artificial Intelligence in Medicine, 1999, 16 (02): : 149 - 169
  • [22] Obtaining interpretable fuzzy classification rules from medical data
    Nauck, D
    Kruse, R
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 1999, 16 (02) : 149 - 169
  • [23] Prediction-Based Power Consumption Monitoring of Industrial Equipment Using Interpretable Data-Driven Models
    Xiao, Hui
    Hu, Wenshan
    Zhou, Hong
    Liu, Guo-Ping
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (02) : 1312 - 1322
  • [24] Validation and refinement of two interpretable models for coronavirus disease 2019 prognosis prediction
    Chang, Kai
    Jia, Ting
    Zhou, Ya-Na
    Shu, Zi-Xin
    Liu, Ji-Fen
    Sun, Jing
    Zheng, Qi-Guang
    Tian, Hao-Yu
    Xia, Jia-Nan
    Yang, Kuo
    Wang, Ning
    Sun, Hai-Long
    Wang, Xin-Yan
    Yan, Deng-Ying
    Clark, Taane
    Liu, Bao-Yan
    Li, Xiao-Dong
    Peng, Yong-Hong
    Zhou, Xue-Zhong
    WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE, 2023, 9 (02) : 191 - 200
  • [25] Validation and Refinement of Two Interpretable Models for Coronavirus Disease 2019 Prognosis Prediction
    Kai Chang
    Ting Jia
    Ya-Na Zhou
    Zi-Xin Shu
    Ji-Fen Liu
    Jing Sun
    Qi-Guang Zheng
    Hao-Yu Tian
    Jia-Nan Xia
    Kuo Yang
    Ning Wang
    Hai-Long Sun
    Xin-Yan Wang
    Deng-Ying Yan
    Taane G.Clark
    Bao-Yan Liu
    Xiao-Dong Li
    Yong-Hong Peng
    Xue-Zhong Zhou
    WorldJournalofTraditionalChineseMedicine, 2023, 9 (02) : 191 - 200
  • [26] Prediction Models for Celiac Disease Development in Children From High-Risk Families: Data From the PreventCD Cohort
    Meijer, Caroline R.
    Auricchio, Renata
    Putter, Hein
    Castillejo, Gemma
    Crespo, Paula
    Gyimesi, Judit
    Hartman, Corina
    Kolacek, Sanja
    Koletzko, Sibylle
    Korponay-Szabo, Ilma
    Ojinaga, Eva Martinez
    Polanco, Isabel
    Ribes-Koninckx, Carmen
    Shamir, Raanan
    Szajewska, Hania
    Troncone, Riccardo
    Villanacci, Vincenzo
    Werkstetter, Katharina
    Mearin, M. Luisa
    GASTROENTEROLOGY, 2022, 163 (02) : 426 - 436
  • [27] Robust spatiotemporal crash risk prediction with gated recurrent convolution network and interpretable insights from SHapley additive explanations
    Kashifi, Mohammad Tamim
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [28] Distilling identifiable and interpretable dynamic models from biological data
    Massonis G.
    Villaverde A.F.
    Banga J.R.
    PLoS Computational Biology, 2023, 19 (10 October)
  • [29] Interpretable risk models for Sleep Apnea and Coronary diseases from structured and non-structured data
    Silva, Carlos Anderson Oliveira
    Gonzalez-Otero, Rafael
    Bessani, Michel
    Mendoza, Liliana Otero
    Castro, Cristiano L. de
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 200
  • [30] Exploiting complex medical data with interpretable deep learning for adverse drug event prediction
    Rebane, Jonathan
    Samsten, Isak
    Papapetrou, Panagiotis
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 109