Irregularity of Polymer Domain Boundaries in Two-Dimensional Polymer Solution

被引:2
|
作者
Liu, Lei [1 ]
Hyeon, Changbong [2 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Phys, Key Lab Opt Field Manipulat Zhejiang Prov, Hangzhou 310018, Peoples R China
[2] Korea Inst Adv Study, Seoul 02455, South Korea
基金
中国国家自然科学基金;
关键词
CRITICAL EXPONENTS; THETA-POINT; CHAIN CONFORMATIONS; DIMENSIONS; EXTERNAL PERIMETER; DIFFUSION; MODELS; SLE; RENORMALIZATION; VISUALIZATION;
D O I
10.1021/acs.macromol.3c00809
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polymer chains composing a polymer solution in strict two dimensions (2D) are characterized with irregular domain boundaries, whose fractal dimension (D-partial derivative) varies with the area fraction of the solution and the solvent quality. Our analysis of numerical simulations of polymer solutions finds that D-partial derivative in good solvents changes nonmonotonically from D-partial derivative = 4/3 in dilute phase to D-partial derivative = 5/ 4 in dense phase, maximizing to D-partial derivative approximate to 3/2 at a crossover area fraction phi cr approximate to 0.2, whereas for polymers in Theta solvents D-partial derivative remains constant at D-partial derivative = 4/ 3 from dilute to semidilute phase. Using polymer physics arguments, we rationalize these values, and show that the maximum irregularity of D-partial derivative approximate to 3/2 is due to "fjord"-like corrugations formed along the domain boundaries which also maximize at the same crossover area fraction. Our finding of D-partial derivative approximate to 3/ 2 is, in fact, in perfect agreement with the upper bound for the fractal dimension of the external perimeter of 2D random curves at scaling limit, which is predicted by the Schramm-Loewner evolution (SLE).
引用
收藏
页码:6870 / 6879
页数:10
相关论文
共 50 条
  • [31] Overview on Two-Dimensional Molybdenum Disulfide/Polymer Nanocomposites
    Yang H.
    Xiong J.
    Du S.
    Chen X.
    Li Y.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2019, 35 (03): : 178 - 184
  • [32] Algebraic Displacement Correlation in Two-Dimensional Polymer Melts
    Wittmer, J. P.
    Meyer, H.
    Johner, A.
    Kreer, T.
    Baschnagel, J.
    PHYSICAL REVIEW LETTERS, 2010, 105 (03)
  • [33] A Radical Polymer as a Two-Dimensional Organic Half Metal
    Lee, Eun Cheol
    Choi, Young Cheol
    Kim, Woo Youn
    Singh, N. Jiten
    Lee, Sik
    Shim, Ji Hoon
    Kim, Kwang S.
    CHEMISTRY-A EUROPEAN JOURNAL, 2010, 16 (40) : 12141 - 12146
  • [34] On the dynamics and disentanglement in thin and two-dimensional polymer films
    Meyer, H.
    Kreer, T.
    Cavallo, A.
    Wittmer, J. P.
    Baschnagel, J.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 141 (1): : 167 - 172
  • [35] Molecular dynamics simulation of a two-dimensional polymer melt
    Balabaev, NK
    Darinskii, AA
    Neelov, IM
    Lukasheva, NV
    Emri, I
    POLYMER SCIENCE SERIES A, 2002, 44 (07) : 781 - 790
  • [36] Extensional flow of a two-dimensional polymer liquid crystal
    Universita Federico II Napoli, Napoli, Italy
    Macromolecules, 26 (8473-8478):
  • [37] Mechanical failures of Two-Dimensional materials on polymer substrates
    Chae, Kwanbyung
    Nguyen, Van Tu
    Lee, Sangryun
    Phung, Thi Quynh
    Sim, Yumin
    Seong, Maeng-Je
    Lee, Sangwoon
    Ahn, Yeong Hwan
    Lee, Soonil
    Ryu, Seunghwa
    Park, Ji- Yong
    APPLIED SURFACE SCIENCE, 2022, 605
  • [38] Dirac Cones in two-dimensional conjugated polymer networks
    Adjizian, Jean-Joseph
    Briddon, Patrick
    Humbert, Bernard
    Duvail, Jean-Luc
    Wagner, Philipp
    Adda, Coline
    Ewels, Christopher
    NATURE COMMUNICATIONS, 2014, 5
  • [39] Polybenzobisimidazole-Derived Two-Dimensional Supramolecular Polymer
    Seo, Wanji
    Carpenter, Keith L.
    Gaugler, James A.
    Shao, Wenting
    Werling, Keith A.
    Fournier, Philip M.
    Lambrecht, Daniel S.
    Star, Alexander
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2017, 55 (06) : 1095 - 1101
  • [40] On two-dimensional ferroelectricity in layered polymer films on substrates
    S. A. Pikin
    Crystallography Reports, 2002, 47 : 679 - 682