Optimizing Reinforcement Learning Control Model in Furuta Pendulum and Transferring it to Real-World

被引:1
|
作者
Hong, Myung Rae [1 ]
Kang, Sanghun [1 ]
Lee, Jingoo [2 ]
Seo, Sungchul [3 ]
Han, Seungyong [1 ]
Koh, Je-Sung [1 ]
Kang, Daeshik [1 ]
机构
[1] Ajou Univ, Dept Mech Engn, Multiscale Bioinspired Technol Lab, Suwon 16499, South Korea
[2] Korea Inst Machinery ad Mat, Dept Sustainable Environm Res, Multiscale Bioinspired Technol Lab, Daejeon 34103, South Korea
[3] Seokyeong Univ, Dept Nanochem Biol & Environm Engn, Seoul 02713, South Korea
基金
新加坡国家研究基金会;
关键词
Furuta pendulum; inverted pendulum problem; reward design; reinforcement learning; Sim2Real;
D O I
10.1109/ACCESS.2023.3310405
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reinforcement learning does not require explicit robot modeling as it learns on its own based on data, but it has temporal and spatial constraints when transferred to real-world environments. In this research, we trained a balancing Furuta pendulum problem, which is difficult to model, in a virtual environment (Unity) and transferred it to the real world. The challenge of the balancing Furuta pendulum problem is to maintain the pendulum's end effector in a vertical position. We resolved the temporal and spatial constraints by performing reinforcement learning in a virtual environment. Furthermore, we designed a novel reward function that enabled faster and more stable problem-solving compared to the two existing reward functions. We validate each reward function by applying it to the soft actor-critic (SAC) and proximal policy optimization (PPO). The experimental result shows that cosine reward function is trained faster and more stable. Finally, SAC algorithm model using a cosine reward function in the virtual environment is an optimized controller. Additionally, we evaluated the robustness of this model by transferring it to the real environment.
引用
收藏
页码:95195 / 95200
页数:6
相关论文
共 50 条
  • [1] Transferring online reinforcement learning for electric motor control from simulation to real-world experiments
    Book G.
    Traue A.
    Balakrishna P.
    Brosch A.
    Schenke M.
    Hanke S.
    Kirchgassner W.
    Wallscheid O.
    IEEE Open Journal of Power Electronics, 2021, 2 : 187 - 201
  • [2] REAL-WORLD DEEP REINFORCEMENT LEARNING FOR POSITION TRACKING OF A PENDULUM DRIVEN BY A SERIES ELASTIC ACTUATOR
    Sambhus, Ruturaj
    Gokce, Aydin
    Welch, Stephen
    Leonessa, Alexander
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 6, 2023,
  • [3] Towards Real-World Deployment of Reinforcement Learning for Traffic Signal Control
    Mueller, Arthur
    Rangras, Vishal
    Ferfers, Tobias
    Hufen, Florian
    Schreckenberg, Lukas
    Jasperneite, Juergen
    Schnittker, Georg
    Waldmann, Michael
    Friesen, Maxim
    Wiering, Marco
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 507 - 514
  • [4] Real-world humanoid locomotion with reinforcement learning
    Radosavovic, Ilija
    Xiao, Tete
    Zhang, Bike
    Darrell, Trevor
    Malik, Jitendra
    Sreenath, Koushil
    SCIENCE ROBOTICS, 2024, 9 (89)
  • [5] Real-Sim-Real Transfer for Real-World Robot Control Policy Learning with Deep Reinforcement Learning
    Liu, Naijun
    Cai, Yinghao
    Lu, Tao
    Wang, Rui
    Wang, Shuo
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [6] Real-World Reinforcement Learning via Multifidelity Simulators
    Cutler, Mark
    Walsh, Thomas J.
    How, Jonathan P.
    IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (03) : 655 - 671
  • [7] Reinforcement Learning in Robotics: Applications and Real-World Challenges
    Kormushev, Petar
    Calinon, Sylvain
    Caldwell, Darwin G.
    ROBOTICS, 2013, 2 (03): : 122 - 148
  • [8] Real-world damping of a physical pendulum
    Bacon, ME
    Nguyen, DD
    EUROPEAN JOURNAL OF PHYSICS, 2005, 26 (04) : 651 - 655
  • [9] Reinforcement Learning for Semi-Active Vertical Dynamics Control with Real-World Tests
    Ultsch, Johannes
    Pfeiffer, Andreas
    Ruggaber, Julian
    Kamp, Tobias
    Brembeck, Jonathan
    Tobolar, Jakub
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [10] First steps towards real-world traffic signal control optimisation by reinforcement learning
    Meess, Henri
    Gerner, Jeremias
    Hein, Daniel
    Schmidtner, Stefanie
    Elger, Gordon
    Bogenberger, Klaus
    JOURNAL OF SIMULATION, 2024, 18 (06) : 957 - 972