Automatic tuning of robust model predictive control in iterative tasks using efficient Bayesian optimization

被引:1
|
作者
Tong, Junbo [1 ,2 ]
Du, Shuhan [1 ]
Fan, Wenhui [1 ]
Chai, Yueting [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Automat, Main Bldg 601A, Beijing 100084, Peoples R China
关键词
Robust model predictive control; Bayesian optimization; iterative learning control; LINEAR-SYSTEMS; MPC; PERFORMANCE;
D O I
10.1177/01423312231188871
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust model predictive control (RMPC) is an effective technology for controlling uncertain systems while robustly handling constraints, and its closed-loop performance heavily relies on the selection of objective functions. However, the objective functions are typically chosen to be close to the real control objectives, despite an objective function that leads to less conservative constraints often provides better closed-loop performance. In this paper, we propose an automatic tuning framework for RMPC in iterative tasks. In particular, we parameterize RMPC and develop a Bayesian optimization (BO) method to tune it by solving a black-box optimization problem. We then introduce an efficient transfer learning framework within BO, which speeds up the searching process and enhances the controller performance. The effectiveness of the proposed tuning framework is illustrated on numerical examples.
引用
收藏
页码:1362 / 1373
页数:12
相关论文
共 50 条
  • [31] Robust model predictive control of the automatic operation boats for aquaculture
    Zhang, Jun
    Sun, Tairen
    Zhao, Dean
    Hong, Jianqing
    Sun, Yueping
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2017, 142 : 118 - 125
  • [32] Value Approximator-Based Learning Model Predictive Control for Iterative Tasks
    Bao, HanQiu
    Kang, Qi
    Shi, XuDong
    Zhou, MengChu
    An, Jing
    Al-Turki, Yusuf
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (10) : 7020 - 7027
  • [33] Robust model predictive control by iterative optimisation for polytopic uncertain systems
    Wang, Chuanxu
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (09) : 1656 - 1663
  • [34] TUNING OF MODEL PREDICTIVE CONTROL WITH MULTI-OBJECTIVE OPTIMIZATION
    Yamashita, A. S.
    Zanin, A. C.
    Odloak, D.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2016, 33 (02) : 333 - 346
  • [35] Bayesian Optimisation for Robust Model Predictive Control under Model Parameter Uncertainty
    Guzman, Rel
    Oliveira, Rafael
    Ramos, Fabio
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 5539 - 5545
  • [36] Iterative Feedback Tuning for robust controller design and optimization
    Prochazka, Hynek
    Gevers, Michel
    Anderson, Brian D. O.
    Ferrera, Christel
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 3602 - 3607
  • [37] Model-Predictive Control with Stochastic Collision Avoidance using Bayesian Policy Optimization
    Andersson, Olov
    Wzorek, Mariusz
    Rudol, Piotr
    Doherty, Patrick
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 4597 - 4604
  • [38] Robust Model Predictive Control Paradigm for Automatic Voltage Regulators against Uncertainty Based on Optimization Algorithms
    Elsisi, Mahmoud
    Tran, Minh-Quang
    Hasanien, Hany M.
    Turky, Rania A.
    Albalawi, Fahad
    Ghoneim, Sherif S. M.
    MATHEMATICS, 2021, 9 (22)
  • [39] Efficient robust predictive control
    Kouvaritakis, B
    Rossiter, JA
    Schuurmans, J
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (08) : 1545 - 1549
  • [40] Learning Model Predictive Control for Iterative Tasks. A Data-Driven Control Framework
    Rosolia, Ugo
    Borrelli, Francesco
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (07) : 1883 - 1896