The failure mechanism of curved composite laminates subjected to low-velocity impact

被引:28
|
作者
Wan, Yun [1 ]
Liu, Yihui [1 ]
Hu, Chaojie [2 ]
Yao, Jian [1 ]
Wang, Fangxin [3 ]
Yang, Bin [2 ]
机构
[1] East China Jiaotong Univ, Sch Civil Engn & Architecture, Nanchang 330013, Peoples R China
[2] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
[3] Yangzhou Univ, Coll Architectural Sci & Engn, Yangzhou 225009, Peoples R China
基金
中国国家自然科学基金;
关键词
Curved composite laminate; Low-velocity impact; Compression-after-impact; Damage evaluation; Failure mechanism; COMPRESSIVE STRENGTH; HYBRID COMPOSITES; DAMAGE; BEHAVIOR; PANELS;
D O I
10.1007/s10409-023-23113-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Four panels with a semicircular arch structure comprised of glass-fiber-reinforced polymer (GFRP) laminates are subjected to low-velocity impact, compression-after-impact (CAI), and quasi-static compression tests. Mechanical response and the failure mechanism of the complex structure are investigated with the assistance of a three-dimensional digital image correlation (3D-DIC) system and numerical simulation based on Hashin's failure criteria in Abaqus software. The results show that the addition of a semicircular arch can absorb more incident energy during the impact process. The failure modes of the panels are depended on the semicircular arch dimension, and excellent anti-impact performance is found in the semicircular arch with a diameter close to the impactor. Meanwhile, the CAI strength is increased with the semicircular arch size.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Experimental analysis and simulation of low-velocity impact damage of composite laminates
    Falco, O.
    Lopes, C. S.
    Sommer, D. E.
    Thomson, D.
    Avila, R. L.
    Tijs, B. H. A. H.
    COMPOSITE STRUCTURES, 2022, 287
  • [42] Numerical Simulation of Low-velocity Impact of Composite Laminates with Metal Layers
    Cui J.
    Guo Z.
    Zhu M.
    Li Y.
    Luan Y.
    Yang Q.
    Cailiao Daobao/Materials Reports, 2021, 35 (04): : 04150 - 04158
  • [43] Numerical simulation of low-velocity impact damage on stitched composite laminates
    State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Fuhe Cailiao Xuebao, 3 (715-724):
  • [44] RESPONSE OF COMPOSITE LAMINATES TO CONTACT LOADS AND RELATIONSHIP TO LOW-VELOCITY IMPACT
    WU, EB
    SHYU, K
    JOURNAL OF COMPOSITE MATERIALS, 1993, 27 (15) : 1443 - 1464
  • [45] A progressive damage model of composite laminates under low-velocity impact
    Zhou J.
    Wang S.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2021, 39 (01): : 37 - 45
  • [46] Research on low-velocity impact damage and influencing factors of composite laminates
    Xue, Lian
    Li, Weiping
    Liu, Jialei
    Xue, Caijun
    JOURNAL OF COMPOSITE MATERIALS, 2025,
  • [47] Low-velocity impact behavior and residual tensile strength of composite laminates
    Guan Q.
    Feng J.
    Xia P.
    Wu G.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (06): : 1220 - 1232
  • [48] Research on low-velocity impact resistance of carbon fiber composite laminates
    Hou, Xin
    Aymerich, Francecso
    Feng, Dianshi
    POLYMER COMPOSITES, 2024, 45 (07) : 6125 - 6141
  • [49] Review and benchmark study on the analysis of low-velocity impact on composite laminates
    Bogenfeld, Raffael
    Kreikemeier, Janko
    Wille, Tobias
    ENGINEERING FAILURE ANALYSIS, 2018, 86 : 72 - 99
  • [50] Low-velocity impact analysis of carbon nanotube reinforced composite laminates
    Chun-Hao Yang
    Wu-Ning Ma
    Da-Wei Ma
    Journal of Materials Science, 2018, 53 : 637 - 656