Terahertz absorber with switchable functionality from ultra-broadband to broadband

被引:4
|
作者
Wu, Guozheng
Li, Chao [1 ]
Wang, Dong
Chen, Wenya
Gao, Song
Guo, Haijun
Zhang, Chunwei
Guo, Shijing
机构
[1] Univ Jinan, Sch Informat Sci & Engn, Jinan 250022, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; Ultra-broadband; Absorption mode switchable; Polarization; Insensitive; Vanadium dioxide; PERFECT ABSORBER; GRAPHENE; METAMATERIAL;
D O I
10.1016/j.diamond.2023.110306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present a terahertz absorber with switchable absorption modes by utilizing patterned graphene-vanadium dioxide. Through thermal tuning of vanadium dioxide and electrical control of graphene, our device demonstrates two distinct absorption modes that can be switched between. By maintaining the Fermi energy of graphene at 1 eV, the device achieved an ultra-broadband absorption with a bandwidth of 4.62 THz, spanning from 3.58 to 8.20 THz, when the conductivity of vanadium dioxide reached 200,000 S/m. Once the conductivity dropped to 200 S/m, we observed a narrower bandwidth of 0.95 THz (ranging from 6.58 to 7.53 THz) for the broadband absorption. At this stage, manipulating the Fermi energy of graphene allows for control over the amplitude and frequency shift of the broadband mode. Additionally, the device benefits from a remarkable degree of symmetry, which guarantees its insensitivity to changes in polarization angle. The impact of geometric parameters on the robustness of absorption characteristics is also discussed. The device may have potential applications in broadband mirror and electromagnetic shielding and so on.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A design of ultra-broadband metamaterial absorber
    Shi, Yan
    Li, Yuan Chang
    Hao, Tong
    Li, Long
    Liang, Chang-Hong
    WAVES IN RANDOM AND COMPLEX MEDIA, 2017, 27 (02) : 381 - 391
  • [32] Ultra-broadband microwave metamaterial absorber
    Ding, Fei
    Cui, Yanxia
    Ge, Xiaochen
    Jin, Yi
    He, Sailing
    APPLIED PHYSICS LETTERS, 2012, 100 (10)
  • [33] A dual ultra-broadband switchable high-performance terahertz absorber based on hybrid graphene and vanadium dioxide
    Chen, Wenya
    Li, Chao
    Wang, Dong
    Gao, Song
    Zhang, Chunwei
    Guo, Haijun
    An, Wei
    Guo, Shijing
    Wu, Guozheng
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (30) : 20414 - 20421
  • [34] Graphene Multi-Frequency Broadband and Ultra-Broadband Terahertz Absorber Based on Surface Plasmon Resonance
    Chen, Zihao
    Cai, Pinggen
    Wen, Qiye
    Chen, Hao
    Tang, Yongjian
    Yi, Zao
    Wei, Kaihua
    Li, Gongfa
    Tang, Bin
    Yi, Yougen
    ELECTRONICS, 2023, 12 (12)
  • [35] Tunable ultra-broadband terahertz metamaterial absorber based on vanadium dioxide strips
    Gevorgyan, Lilit
    Haroyan, Hovhannes
    Parsamyan, Henrik
    Nerkararyan, Khachatur
    RSC ADVANCES, 2023, 13 (18) : 11948 - 11958
  • [36] A tunable ultra-broadband terahertz absorber based on two layers of graphene ribbons
    Daraei, Omid Mohsen
    Goudarzi, Kiyanoush
    Bemani, Mohammad
    OPTICS AND LASER TECHNOLOGY, 2020, 122 (122):
  • [37] Tunable ultra-broadband terahertz perfect absorber based on vanadium oxide metamaterial
    Li, Yulian
    Gao, Wei
    Guo, Li
    Chen, Zihao
    Li, Changjian
    Zhang, Haiming
    Jiao, Jiajia
    An, Bowen
    OPTICS EXPRESS, 2021, 29 (25): : 41222 - 41233
  • [38] An ultra-broadband tunable graphene-based metamaterial absorber in terahertz range
    Xu, Zenghui
    Liu, Yumin
    Wu, Dong
    Yu, Zhongyuan
    Ye, Han
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,
  • [39] Ultra-broadband perfect terahertz absorber with periodic-conductivity graphene metasurface
    Wang, Baoku
    Gai, Ke
    Wang, Ruoxing
    Yan, Fei
    Li, Li
    OPTICS AND LASER TECHNOLOGY, 2022, 154
  • [40] An Ultra-Broadband Terahertz Absorber Based on Coplanar Graphene and Gold Hybridized Metasurface
    Deng, Yun-wu
    Peng, Lin
    Liao, Xin
    Jiang, Xing
    PLASMONICS, 2019, 14 (05) : 1057 - 1061