Terahertz absorber with switchable functionality from ultra-broadband to broadband

被引:4
|
作者
Wu, Guozheng
Li, Chao [1 ]
Wang, Dong
Chen, Wenya
Gao, Song
Guo, Haijun
Zhang, Chunwei
Guo, Shijing
机构
[1] Univ Jinan, Sch Informat Sci & Engn, Jinan 250022, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; Ultra-broadband; Absorption mode switchable; Polarization; Insensitive; Vanadium dioxide; PERFECT ABSORBER; GRAPHENE; METAMATERIAL;
D O I
10.1016/j.diamond.2023.110306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present a terahertz absorber with switchable absorption modes by utilizing patterned graphene-vanadium dioxide. Through thermal tuning of vanadium dioxide and electrical control of graphene, our device demonstrates two distinct absorption modes that can be switched between. By maintaining the Fermi energy of graphene at 1 eV, the device achieved an ultra-broadband absorption with a bandwidth of 4.62 THz, spanning from 3.58 to 8.20 THz, when the conductivity of vanadium dioxide reached 200,000 S/m. Once the conductivity dropped to 200 S/m, we observed a narrower bandwidth of 0.95 THz (ranging from 6.58 to 7.53 THz) for the broadband absorption. At this stage, manipulating the Fermi energy of graphene allows for control over the amplitude and frequency shift of the broadband mode. Additionally, the device benefits from a remarkable degree of symmetry, which guarantees its insensitivity to changes in polarization angle. The impact of geometric parameters on the robustness of absorption characteristics is also discussed. The device may have potential applications in broadband mirror and electromagnetic shielding and so on.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [1] Ultra-broadband terahertz perfect absorber
    Zang, XiaoFei
    Shi, Cheng
    Peng, Yan
    Zhu, YiMing
    2015 40TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2015,
  • [2] A switchable terahertz metamaterial absorber between ultra-broadband and dual bands
    Ren, Zhi
    Wang, Wanqing
    Zhao, Yinghui
    Chang, Siqi
    Ren, Guanhua
    Li, Songtao
    Wang, Ruoxing
    FRONTIERS IN PHYSICS, 2023, 11
  • [3] Ultra-broadband terahertz metamaterial absorber
    Zhu, Jianfei
    Ma, Zhaofeng
    Sun, Wujiong
    Ding, Fei
    He, Qiong
    Zhou, Lei
    Ma, Yungui
    APPLIED PHYSICS LETTERS, 2014, 105 (02)
  • [4] An ultra-broadband terahertz absorber at high terahertz frequency
    Tong Li
    Hang Chen
    Fengqiang Zhang
    Jia Zhang
    Zhenlong Wang
    Optical and Quantum Electronics, 2022, 54
  • [5] An ultra-broadband terahertz absorber at high terahertz frequency
    Li, Tong
    Chen, Hang
    Zhang, Fengqiang
    Zhang, Jia
    Wang, Zhenlong
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (12)
  • [6] Ultra-broadband metamaterial absorber in terahertz regime
    Ma, Zhaofeng
    Ding, Fei
    2012 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2012,
  • [7] Design of a switchable bifunctional terahertz metamaterial absorber from ultra-broadband to 10-band
    Qi, Yunping
    Wang, Li
    Wen, Yujiao
    Chen, Haowen
    Yuan, Yujiao
    Zhou, Zihao
    Zhao, Shiyu
    Wang, Xiangxian
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (05) : 939 - 948
  • [8] Ultra-broadband terahertz absorber based on graphene ribbons
    Chaharmahali, Iman
    Biabanifard, Sadegh
    OPTIK, 2018, 172 : 1026 - 1033
  • [9] Tri-Band/Ultra-Broadband Switchable Terahertz Metamaterial Absorber Based on Graphene Patches
    Liu, Yulong
    Xiao, Zhongyin
    Cai, Xianshun
    Zheng, Qi
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (11) : 7085 - 7095
  • [10] Ultra-broadband and thin switchable multifunctional metamaterial for terahertz wave
    Jalal, Abdul
    Khan, Alina
    Qasim, Muhammad
    Qureshi, Ubaid Ur Rahman
    Moghise, Mojtaba
    PHYSICA SCRIPTA, 2024, 99 (08)